

ENVIRONMENTAL PRODUCT DECLARATION

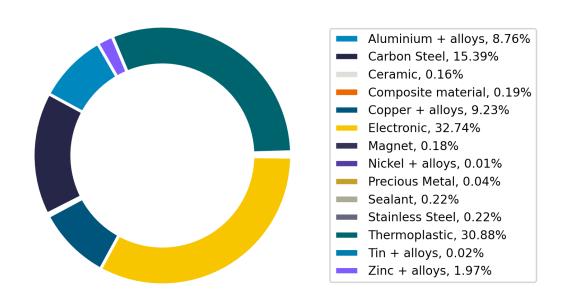
SINAMICS G120C

Compact converters for continous motion

Type II according to ISO 14021 including life cycle impact assessment (LCIA)

General information

This environmental product declaration (EPD) is based on the international standard ISO 14021 ("Environmental labels and declarations – Self declared environmental claims – Type II"). The data in this EPD has been evaluated on a full-scale life cycle assessment (LCA) study according to ISO 14040/44, taking into account the product category rules (PCR) for electronic and electrotechnical products and systems defined in EN 50693. The applied use phase scenario including load profile is based on EN 50598-3:2015 Table 5.


Siemens is dedicated to an environmentally conscious design of its products in line with IEC 62430 and has implemented an integrated management system according to ISO 9001, ISO 14001 and ISO 45001.

Products	SINAMICS G120C in frame sizes FSAA, FSA, FSB, FSC, FSD, FSE and FSF, voltage classs 380 V480 V 3 AC (0.55 kW - 132 kW) in IP20 degree of protection					
Represented by	6SL3210-1KE15-8AF2, 2,2kW, 3AC 380-480V, Filter Class A, IP20, PROFINET					
Product Description	SINAMICS G120C converter, safety, IP20, air cooling, PROFINET, USS/Modbus RTU, PROFIBUS DP					
Functional Unit	Speed and torque control of asynchronous induction motors. Calculation of the environmental impacts is based on 15 years of product service lifetime. This value cannot be equated with the minimum, average or inidvidual life time					

Material composition

The following chart outlines the overall material composition of the calculated reference product. Product weight of 1.37 kg adds up with packaging weight of 0.27 kg to a total weight of 1.64 kg. Packaging consists of corrugated cardboard Box, plastic foil label and Paper.

Product Weight 1.37 kg

Substance assessment

At Siemens, we are committed to the development and production of environmentally sound and sustainably produced equipment. This includes avoiding hazardous substances in our products without compromising their benefits for our customers. Please visit the following website to learn more about how we comply with product-related environmental regulations like RoHS, REACH, WEEE and others: Product Related Environmental Protection

Life cycle stages and reference scenarios

Manufacturing

This stage covers the extraction of natural resources, production of raw materials, manufacturing, packaging, and transport distances.

Distribution and Operation

This stage covers the product's distribution, installation, use, and maintenance. Different operating conditions can lead to deviations from the reference scenario.

End-of-Life

This stage covers the disassembly, material recycling and thermal treatment of all recyclable materials as well as the disposal of all other materials.

Scenarios

Energy model used:

China (standard mix), Europe (standard mix), United Kingdom (standard mix)

Transportation model used:

Container Ship, Suezmax 160000 DWT 18500 TEU 19000 km, Truck 7.5t-12t gross weight 1000 km average distance

Energy model used:

Europe (standard mix)

Distribution scenario:

Container Ship, Suezmax 160000 DWT 18500 TEU 19000km, Truck, 7.5 t - 12t gross weight 1000km

Use scenario:

Operation profile is defined by 3 operational points (OP): OP1: 20% of time at 100% speed and 100% torque OP2: 70% of time at 50% speed and 25% torque OP3: 10% of time at 0% speed and 25% torque Lifetime 15 years and annual operation 5000h/year

Energy model used:

Europe (stndard mix)

End-of-life methodology:

Avoid Burden (plastic waste incineration with energy recovery)

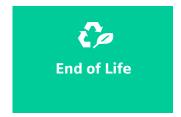
Key environmental performance indicators

The following impact categories characterize the product's environmental footprint. The following impact categories characterize the product's environmental footprint. They have been calculated with LCIA methodology EF3.0; LCA tool: Green Digital Twin (GDT), Database: One Siemens LCA Database (based on MLC CUP 2023.2, formerly GaBi).

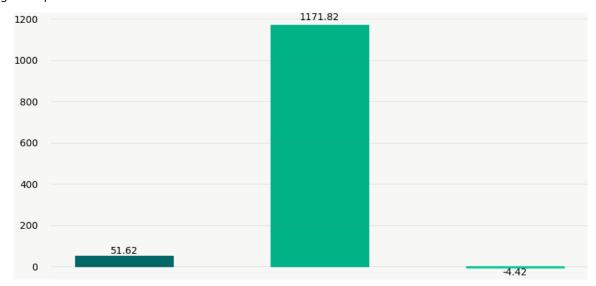
To ensure the high quality and completeness of the LCA results, Primary Data have been used whenever possible. Datasets for resources, such as electrical energy or natural gas, are chosen from the region where the device is produced and assembled. If primary data are not available, datasets reflecting state-of-the-art manufacturing technology are considered.

For products belonging to the same homogeneous product family range the following extrapolation criteria (Annex) can be used to derive their climate change impact in kg CO2 eq. The rest of the listed impacts will be determined in the following version of the EPD.:

Impact Category	Unit	Total	Manufacturing	Distribution	Operation	End of Life	
Acidification	Mole of H+ eq	2.79E+0	4.00E-1	6.25E-3	2.47E+0	-8.77E-2	
Climate change – total	kg CO2 eq	1.22E+3	5.16E+1	5.36E-1	1.17E+3	-4.42E+0	
Climate change – fossil	kg CO2 eq	1.21E+3	4.99E+1	5.32E-1	1.16E+3	-4.39E+0	
Climate change – biogenic	kg CO2 eq	1.19E+1	1.68E+0	1.12E-3	1.03E+1	-1.66E-2	
Climate Change, land use and land use change	kg CO2 eq	1.47E-1	2.71E-2	3.40E-3	1.27E-1	-6.97E-3	
Ecotoxicity, freshwater – total	CTUe	7.30E+3	5.51E+2	5.02E+0	6.78E+3	-4.04E+1	
Eutrophication, freshwater	kg P eq	1.13E-2	6.91E-3	1.38E-6	4.35E-3	-7.82E-6	
Eutrophication, marine	kg N eq	6.65E-1	7.94E-2	1.59E-3	5.93E-1	-8.56E-3	
Eutrophication, terrestrial	Mole of N eq	6.71E+0	5.89E-1	1.76E-2	6.20E+0	-9.37E-2	
Human toxicity, cancer – total	CTUh	4.10E-7	5.26E-8	9.90E-11	3.59E-7	-1.98E-9	
Human toxicity, non-cancer – total	CTUh	9.47E-6	3.84E-6	4.07E-9	5.72E-6	-9.30E-8	
lonising radiation, human health	kBq U235 eq	6.48E+2	4.56E+0	1.75E-3	6.43E+2	-1.25E-1	
Land Use	dimensionless (pt)	9.96E+3	3.70E+2	2.10E+0	9.61E+3	-2.07E+1	
Ozone depletion	kg CFC-11 eq	3.05E-8	9.07E-9	5.93E-14	2.14E-8	-1.69E-11	
Particulate matter	Disease incidences	2.54E-5	5.28E-6	1.07E-7	2.08E-5	-7.66E-7	
Photochemical ozone formation, human health	kg NMVOC eq	1.72E+0	1.64E-1	4.44E-3	1.58E+0	-2.72E-2	
Resource use, fossils	MJ	2.50E+4	6.80E+2	7.04E+0	2.44E+4	-6.08E+1	
Resource use, mineral and metals	kg Sb eq	2.78E-2	3.40E-2	2.59E-8	1.79E-4	-6.34E-3	
Water use	m³ water eq deprived water	2.51E+2	-1.97E+0	4.72E-3	2.55E+2	-2.91E+0	


Climate Change

This chart shows the overall impact of the product on climate change – total. This chart shows the overall impact of the product on climate change – total. The operations phase is the lifecycle


phase with the biggest overall impact. Different operating conditions can lead to deviations from the references scenario. The distribution stage of the reference product is not shown in the chart due to its relatively small contribution to climate change, thus its impact is included in the operation bar.

kgCO2eq

End-of-Life results

The end-of-life stage considers the recyclability rates of metal, plastics contents and minimum disposal rates according to the guidelines IEC TR 62635:2012 for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment.

It leads to:

- an overall product recyclability of up to 36% mainly due to metal content
- an energy recoverability of up to 32% from plastic materials
- a minimum disposal rate of 33%

Note: The device should not be disposed of as unsorted municipal waste. Special treatment for specific components may be mandated by law or recommended for environmental reasons. Observe all local and applicable laws

Legal Disclaimer

This Environmental Product Declaration (EPD) is for information purposes only. It is based upon the standards mentioned above.

This EPD does not warrant or guarantee the composition of a product or that the product will retain a particular composition for a particular period. Therefore, all warranties, representations, conditions, and all other terms of any kind whatsoever implied by statute or common law are – to the fullest extent permitted by applicable law – excluded.

Siemens therefore does not assume any liability for any error or for any consequence which may arise from the use of this information to the maximum extent under the law.

Please be aware that the data of this EPD cannot be compared with data calculated based upon product category rules (PCRs) other than the standards mentioned above. The values given are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Published by Siemens AG

Digital Industries

Motion Control

Frauenauracher Str. 80 91056 Erlangen Germany

Subject to changes and errors.

The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or product names of Siemens AG or other companies whose use by third parties for their own purposes could violate the rights of the owners.

© 2024 by Siemens AG, Berlin and Munich

Annex

For other MLFBs covered by this EPD under SINAMICS G120C homogenous product family, the climate change impact (CC) in kg CO2 eq. can be calculated for the manufacturing and end of life phases using linear regression equations according to the weight in kg (m) of the assessed product.

The following equations based on linear regression is defined as:

y=m*x+b

where,

y....climate change in kgCO2eq.

m....scaling factor (without dimension)

x.... mass of the inverter in kg b.... intercept (offset) in kg

Thus, the factors for the manufacturing phase are:

m = 14.552, b = 27.975 kg

For END of Life:

m = -3.1017, b = 0.0757 kg

For the operation phase, the climate change in kgCO2eq was derived for 400 V and rated power PR (LO) in kW for European standard energy mix, lifetime of 15 years, annual operation 5000h/year and three operation points.

OP1: 20% of time at 100% speed and 100% torque OP2: 70% of time at 50% speed and 25% torque OP3: 10% of time at 0% speed and 25% torque

Voltage	V	400	400	400	400	400	400	400	400
Pr (LO)	kW	0.55	0.75	1.1	1.5	2.2	3	4	5.5
Climate change	kg CO2eq	688	706	818	960	1171	1493	1782	2226
Voltage	V	400	400	400	400	400	400	400	400
Pr (LO)	kW	7.5	11	15	18.5	22	30	37	45
Climate change	kg CO2eq	2782	3854	4550	5299	7720	10558	11200	13378
Voltage	V	400	400	400	400	400		*	8.0
Pr (LO)	kW	55	75	90	110	132	ė.		
Climate change	kg CO2eq	16398	15546	19143	23030	45217			