SIEMENS

Introduction Function blocks Software for parameterization, control, 1

2

3

Industrial Controls

Motor management and control devices Parameterizing SIMOCODE pro

Operating Manual

diagnostics and testing	
Parameters	4
List of abbreviations	Α

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

indicates that death or severe personal injury may result if proper precautions are not taken.

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introductio	n	7
	1.1	Important notes	7
	1.2	Security information	10
	1.3	Current information about operational safety	11
2	Function b	locks	13
	2.1	Function blocks - input and output types, structure	13
	2.2	Function blocks - overview	16
3	Software f	or parameterization, control, diagnostics and testing	
	3.1	Software packages	
	3.2	Software components	29
4	Parameter	rs	33
-	1 aramotor	Motor protection	
	4.1	Motor protection functions	ວວ ວວ
	4.1.1	Overlead protection	
	4.1.2	Description of everload protection functions	
	4.1.2.1	Set current ls1	
	4.1.2.2	Set current Is?	،
	4.1.2.5	Application example	
	4.1.2.4	Further overload protection parameters	40 41
	413	Unbalance protection	
	4.1.4	Stalled rotor protection	53
	4.1.5	Thermistor protection	
	4.2	Motor control	
	4.2.1	Control stations	56
	4.2.1.1	Description of functions of control stations	
	4.2.1.2	Operating modes and mode selectors	60
	4.2.1.3	Enables and enabled control command	62
	4.2.1.4	Control station settings	64
	4.2.2	Control functions	65
	4.2.2.1	Overview and description of control functions	65
	4.2.2.2	Application selection, settings and definitions of control functions	70
	4.2.2.3	"Overload relay" control function	75
	4.2.2.4	"Direct starter" control function	77
	4.2.2.5	"Reversing starter" control function	79
	4.2.2.6	"Molded case circuit breaker (MCCB)" control function	81
	4.2.2.7	"Star-delta starter" control function	84
	4.2.2.8	"Star delta reversing starter" control function	
	4.2.2.9	Control function "Dahlander starter"	92
	4.2.2.10	Control function "Dahlander reversing starter"	
	4.2.2.11	"Pole-changing starter" control function	

4.2.2.12	"Pole-changing reversing starter" control function	102
4.2.2.13	"Solenoid valve" control function	105
4.2.2.14	"Positioner" control function	107
4.2.2.15	"Soft starter" control function	112
4.2.2.16	"Soft starter with reversing contactor" control function	114
4.2.3	Active control stations, contactor controls, lamp controls and status information for the	
	control functions	117
4.3	Monitoring functions	120
4.3.1	Ground fault monitoring	120
4.3.1.1	Ground-fault monitoring	120
4.3.1.2	Limits of fault current measurement	123
4.3.1.3	Internal ground-fault monitoring when using a 2nd generation current / voltage	
	measuring module	125
4.3.1.4	Internal ground-fault monitoring when using a current measuring module or a 1st	
	generation current / voltage measuring module	127
4.3.1.5	External ground-fault monitoring with a 3UF7500 ground-fault module and 3UL22	
4.0.4.0	differential current transformer	128
4.3.1.6	External ground-fault monitoring with a 3UF / 510 ground-fault module and 3UL23	120
122		129
4.3.2	Description of functions of current limit monitoring	122
4.3.2.1		. 132
4.3.2.2		133
4.3.2.3	I< (IOWER IIMIT)	134
4.3.3		130
4.3.4	Cos pri monitoring	139
4.3.5	Active power monitoring	141
4.3.6	0/4 - 20 mA monitoring	143
4.3.7	Operation monitoring	147
4.3.7.1	Operation monitoring	. 147
4.3.7.2	Operating nours monitoring	. 148
4.3.7.3	Monitor stop time monitoring	. 149
4.3.7.4	Monitoring the number of starts	150
4.3.8	I emperature monitoring (analog)	152
4.3.9	Monitoring interval for mandatory testing.	. 154
4.3.10	Hysteresis for monitoring functions	155
4.4	Outputs	156
4.4.1	Overview of outputs	156
4.4.2	Basic unit outputs	158
4.4.3	Operator panel LEDs	160
4.4.4	Digital module outputs	163
4.4.5	Analog module output	165
4.4.6	Cyclic Send	170
4.4.7	Acyclic Send	172
4.4.8	OPC-UA send	173
4.5	Inputs	174
4.5.1	Overview of inputs	174
4.5.2	Basic unit inputs	176
4.5.3	Operator panel buttons	178
4.5.4	Digital module inputs	180
4.5.5	Temperature module inputs	183
4.5.6	Analog module inputs	185

4.5.7 4.5.8 4.5.9	Cyclic Receive Acyclic Receive OPC UA Receive	187 188 189
4.6 4.6.1 4.6.2	Analog value recording Analog value recording description of functions Measured curve, function block and analog value recording application example	190 190 191
4.7 4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.7.5.1 4.7.5.2 4.7.6 4.7.7 4.7.8 4.7.9 4.7.10	Standard functions Overview of standard functions Test / Reset. Test position feedback (TPF). External fault Operational Protection Off (OPO). Response to positioner control function. Response to other control functions Power failure monitoring (UVO). Emergency start. Safety-related tripping. Watchdog (Bus monitoring, PLC/PCS monitoring). Timestamping	193 193 195 199 201 203 203 204 205 207 208 215 217
4.7.10 4.8 4.8.1 4.8.2 4.8.3 4.8.4 4.8.5 4.8.6 4.8.7 4.8.8 4.8.9 4.8.10 4.8.11 4.8.12 4.8.13 4.8.14 4.8.15	Logic modules. Overview of logic modules. Truth table for 3I / 10. Truth table for 2I / 10. Truth table for 5I / 20. Counter . Timer. Signal conditioner Non-volatile elements Flashing Flickering. Limit monitor Calculators (calculation modules) 1, 2. Calculators (calculation modules) 3, 4. Analog multiplexer Pulse width modulator.	217 219 219 221 224 225 226 228 233 236 239 240 241 245 249 251 253
List of abb	eviations	257
A.1	List of abbreviations	257
Index		259

Α

Introduction

1.1 Important notes

Scope of application

This manual is applicable to the listed SIMOCODE pro system components. It contains a description of the components applicable at the time of printing the manual. SIEMENS reserves the right to include updated information about new components or new versions of components in a Product Information.

Manual Collection

A Manual Collection (<u>https://support.industry.siemens.com/cs/document/109743951</u>), a collection of the following five SIMOCODE pro manuals is at your disposal in Industry Online Support:

- SIMOCODE pro 1 Getting Started
- SIMOCODE pro 2 System Manual
- SIMOCODE pro 3 Parameterization
- SIMOCODE pro 4 Applications
- SIMOCODE pro 5 Communication

Introduction

1.1 Important notes

SIMOCODE pro response tables

Specific responses (deactivated, signaling, warning, tripping) can be parameterized for various SIMOCODE pro functions, such as overload. These are always displayed in tabular form:

- "X" = Applicable
- "---" = Not applicable
- Default values are marked "d" for "default" in parentheses.

Response	Function 1	Function 2	Function 3
Tripping		X (d)	Х
Warning	X (d)	Х	_
Signaling	Х	Х	_
Deactivated	Х	Х	X (d)
Delay	0 25.5 s (default: 0)	—	—

Brief description of the responses:

- Tripping: The contactor controls QE* are tripped. A fault message is generated which is available as a diagnosis via PROFIBUS DP. The fault message and the device-internal signal remain on until the appropriate length of time has elapsed or the cause of the fault has been eliminated and acknowledged.
- Warning: In addition to the device-internal signal, a warning signal is generated that is available as diagnostics via the communication bus.
- Signaling: Only a device-internal signal is generated, which can be further processed as required.
- Deactivated: The appropriate function is switched off, no signals are generated.

A delay time can also be set for specific responses.

Further information

Please read the operating instructions of the respective components. You can find the operating instructions for SIMOCODE pro at Operating instructions (https://www.siemens.com/sirius/manuals).

You will find further information on the Internet:

- SIMOCODE pro (<u>https://www.siemens.com/simocode</u>)
- Information and Download Center (https://www.siemens.com/sirius/infomaterial)
- Siemens Industry Online Support (SIOS) (<u>https://www.siemens.com/sirius/support</u>)
- Certificates (https://www.siemens.com/sirius/approvals)

Technical Assistance

Support Request (<u>https://www.siemens.com/sirius/technical-assistance</u>) Telephone: +49 (0) 911-895-5900 (8 a.m. to 5 p.m. CET)

Telephone. +49 (0) 911-093-3900 (0 a.m. to 5 p

Fax: +49 (0) 911-895-59 07

E-Mail: technical-assistance@siemens.com

Disclaimer of liability

The products described here have been developed to carry out safety-related functions as part of a complete plant or machine. In general, a complete safety system consists of sensors, evaluation units, signaling devices and methods for safe tripping. The manufacturer is responsible for ensuring safe functioning of the complete plant or machine. Siemens AG, its subsidiaries, and associated companies (hereinafter referred to as "Siemens") are not in a position to guarantee every characteristic of a complete plant or machine not designed by Siemens.

Siemens also denies all responsibility for any recommendations that are made or implied in the following description. No new guarantee, warranty, or liability claims above those standard to Siemens can be derived from the following description.

Recycling and disposal

For environmentally friendly recycling and disposal of your old device, please contact a company certified for the disposal of electronic waste and dispose of the device in accordance with the regulations in your country.

1.2 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit: https://www.siemens.com/industrialsecurity

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under: https://www.siemens.com/industrialsecurity

1.3 Current information about operational safety

Important note for maintaining operational safety of your system

Hazardous Voltage

Can Cause Death, Serious Injury or Risk of Property Damage

Please take note of our latest information!

Systems with safety-related characteristics are subject to special operational safety requirements on the part of the operator. The supplier is also obliged to comply with special product monitoring measures. For this reason, we publish a special newsletter containing information on product developments and features that are (or could be) relevant to operation of safety-related systems. By subscribing to the appropriate newsletter in the Industry newsletter system (https://www.industry.siemens.com/newsletter), you will ensure that you are always up-to-date and able to make changes to your system, when necessary. Sign on to the following newsletter under "Products & Solutions":

- Control Components and System Engineering News
- Safety Integrated Newsletter.

Introduction

1.3 Current information about operational safety

Function blocks

2.1 Function blocks - input and output types, structure

See also Chapter Function blocks - overview (Page 16).

Properties

Function blocks are stored internally in the SIMOCODE pro system, e.g. for the administration of various control stations, for the set control function, or for motor protection. Every function block has a name and can be equipped with inputs and outputs. The inputs and outputs are used for the internal connection of the various function blocks and, thus, the setup of a device-internal logic instead of an externally wired logic in the control circuit.

The following table shows the possible input types of the internal function blocks of SIMOCODE pro:

Table 2- 1	Input types of the internal function blocks of SIMOCODE pro	
------------	---	--

Input	Example
Plugs (binary)	Function blocks in the basic unit may have binary plugs. These are connected to binary sockets via software. They are relevant for parameterization, e.g. with SIMOCODE ES (TIA Portal).
Plugs (analog)	Function blocks in the basic unit may have analog plugs. These are connected via software to analog sockets. They are relevant for parameterization, e.g. with SIMOCODE ES (TIA Portal).
	Example: 2-byte word for cyclic send data.
Screw terminals	Screw terminals are outside, e.g. "BU Inputs" function block. Control devices and auxiliary switches are normally connected there.
Control data from the communication bus	e. g. from the DP master to SIMOCODE pro

The following table shows the possible output types of the internal function blocks of SIMOCODE pro:

2.1 Function blocks - input and output types, structure

Output	Example
Sockets (binary)	Function blocks in the basic units may have binary sockets. These sockets are assigned to binary plugs in the software. They are relevant for parameterization, e.g. with SIMOCODE ES (TIA Portal).
Sockets (analog)	Function blocks in the basic units may have analog sockets. These sockets are assigned to analog plugs in the software. They are relevant for parameterization, e.g. with SIMOCODE ES (TIA Portal).
	Example: 2-byte word, max. current I_max.
Screw terminals	Screw terminals are outside, e.g. "BU Output" function block. The contactors, for example, are connected here.
Message data to the communication bus	e. g from SIMOCODE pro to the DP master
Binary terminal block	Internal binary signals (binary sockets) that are not assigned to a function block (fault, status, other), e.g. "Status - Device o. k. (in the CFC editor)
Analog terminal block	Internal analog signals (analog sockets) that are not assigned to a function block, e.g. "Phase Unbalance" (in the CFC editor).

Table 2- 2	Output types of the internal function blocks of SIMOCODE pro
------------	--

2.1 Function blocks - input and output types, structure

Diagram of basic structure

The following function block diagram (example) shows the basic structure of SIMOCODE pro with its external inputs and outputs and internally stored function blocks:

Figure 2-1 Basic structure of SIMOCODE pro

Connecting plugs with sockets

Note

The function block plugs and sockets have **not** already been connected at the factory with the binary inputs and the relay outputs of the basic unit.

The internal wiring (connection between plugs and sockets) is determined by the selected application. ¹⁾

Note

When you have already installed external wiring, but have not yet parameterized SIMOCODE pro:

If you press a button now, the contactors will not be energized. ¹⁾

1) If you select and load a preset application (e.g. the reversing starter) in SIMOCODE ES (TIA Portal), all links and interlocks for the reversing starter will be set up in the basic unit.

2.2 Function blocks - overview

2.2 Function blocks - overview

Overview of the function blocks (alphabetical)

Function block	View in SIMOCODE ES (TIA Portal)	Section
Analog value recording	analogwertaufzeichnung_1 Trigger input Axsigned analog value Trigger edge Sampling rate Pretrigger	See Analog value recording (Page 190)
Analog module 1/2 output	-Assigned analog output value Start value of value range Output signal	See Analog module output (Page 165)
Analog module 1/2 inputs	Att input signal input 1 Att input signal Att input 1 Attive inp	See Analog module inputs (Page 185)
Analog multiplexer	Analog multiplexer_1	See Analog multiplexer (Page 251)
Acyclic send byte 0 (1)	azykl. melden byte 0_1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	See Acyclic Send (Page 172)
Acyclic receive byte 0 (1, 2/3)	azyki, steuem byte 0_1 bit 0.0 bit 0.1 bit 0.2 bit 0.3 bit 0.4 bit 0.5 bit 0.5 bit 0.7 bit 1.1 bit 1.2 bit 1.2 bit 1.4 bit 1.5 bit 1.6 bit 1.7 bit 1.8 bit 1.8 bit 1.8 bit 1.7 bit 1.8 bit 1.8 bit 1.7 bit 1.8 bit 1.8 bit 1.7 bit 1.8 bit 1.7 bit 1.8 bit 1.8 bit 1.8 bit 1.8 bit 1.7 bit 1.8 bit 1.7 bit 1.8	See Acyclic Receive (Page 188)

Function block	View in SIMOCODE ES (TIA Portal)	Section
Operator panel LED		See Operator panel LEDs (Page 160)
Operator panel buttons	bb-tasten_1 or buttons button 1	See Operator panel buttons (Page 178)
Operation monitoring	Betriebsüberwachung_1 Coperation monitoring Level - Motor operating hours monitoring Level - Stop time Response 0 top time Permissible starts Time range for starts Response to prevaming Interlocking time	See Operation monitoring (Page 147)
Flashing 1 (2, 3)	blinken 1_1 Flashing 1 input output	See Flashing (Page 239)
Operational Protection Off (OPO)	Drop Drop Type Fault-Operational Protection Off (OPO) — Fault-Operational Protection Off (OPO) —	See Operational Protection Off (OPO) (Page 203)
Calculator 1	Calculator 1_1 input output denominator offset	See Calculators (calculation modules) 1, 2 (Page 245)
Calculator 2	Calculator 2_1 Calculator 2 Calculator 2 Correction mode Numerator 1 Operation Offset Numerator 2 Denominator 2	See Calculators (calculation modules) 1, 2 (Page 245)
Calculators 3, 4	Calculator 3_1 input 1 output input 2 input 4 constant 1 constant 2 constant 4 operator 1 operator 1 profity 2 profity 2	See Calculators (calculation modules) 3, 4 (Page 249)
Digital module 1 (2) outputs	-output 1 -output 2	See Digital module outputs (Page 163)
Digital module 1 (2) inputs	Image: model Imput 1 B3 Imput 1 B3 Imput 3 Imput 4 Imput 4	See Digital module inputs (Page 180)

Function blocks

Function block	View in SIMOCODE ES (TIA Portal)	Section
Digital module 1 (2) inputs, DM-F = DM-F Local or DM-F PROFIsafe	Imputs_1	See Digital module inputs (Page 180)
	dm1 eingänge_1 bm1 inputs input 1 input 2 input 3 input 3 feedback circuit	
Extended protection	envelterter schutz_1 Extended protection Set current b1 Cooling down period active prevaring down period active prevaring down period cooling down period cooling down period cooling down period prevaring down period cooling down period cooling down period cooling down period cooling down period prevaring down period cooling down period prevaring down cooling down prevaring cooling cooling	See Motor control (Page 56)
Extended control	envelopment envelopme	See Motor control (Page 56)
External fault 1 (2, 3, 4, 5, 6)	external fault 1 Active status Marking	See External fault (Page 201)
Flicker 1 (2, 3)	Flicker 1 - input output	See Flickering (Page 240)
Basic unit outputs, SIMOCODE pro C/V basic units	-output 1 -output 2 -output 3 -output 3	See Basic unit outputs (Page 158)
Basic unit outputs, SIMOCODE pro S basic unit	-output 1 -output 2 -output 2 -output 2	See Basic unit outputs (Page 158)
Basic unit inputs	gg-eingänge_1 su inputs input 1 input 2 input 4 test/reset button	See Basic unit inputs (Page 176)

Function block	View in SIMOCODE ES (TIA Portal)	Section	
Limit monitor 1 (2, 3, 4, 5, 6)	Grenzwertmelder 1_1 Imut monitor 1 Type Active status Limit Delay Marking	See Limit monitor (Page 241)	
Emergency start	motstart_1 mergency start minput emergency start executed —	See Emergency start (Page 207)	
Non-volatile element 1 (2, 3, 4)	Indispannungssicheres element 1_1 Input In	See Non-volatile elements (Page 236)	
OPC UA send data 0 (1)	axykl. melden byte 0_1 -Bit 0 -Bit 2 -Bit 3 -Bit 4 -Bit 5 -Bit 7	See OPC-UA send (Page 173)	
OPC UA receive data 0 (1, 2/3)	azyli, steuen byte 0,1 bit 0.0 bit 0.1 bit 0.2 bit 0.3 bit 0.4 bit 0.5 bit 0.7 azyli, steuen byte 1,1 bit 0.7 bit 1.2 bit 1.4 bit 1.5 bit 1.7 bit 1.7 bit 1.7 bit 1.7 bit 1.7 bit 1.8 bit 1.7 bit 1.8 bit 1.7 bit 1.7 bit 1.7	See OPC UA Receive (Page 189)	
Pulse width modulator	pulsweitenmodulation (pwm)_1 Pulse width mod. (PWM) input minimum input maximum duration	See Pulse width modulator (Page 253)	
Reset 1 (2, 3)	-Ereset 1_1 input	See Test / Reset (Page 195)	
TPF (test position feedback)	-input test position (TPF) Type Test Position Reedback (TPF)	See Test position feedback (TPF) (Page 199)	

Function blocks

Function block	View in SIMOCODE ES (TIA Portal)	Section	
Protection/Control		See Motor control (Page 56)	
Signal conditioning 1 (2, 3, 4, 5, 6)	signalanpassung 1_1 signal conditioning 1 —input —reset type	See Signal conditioner (Page 233)	
Safe tripping, DM-F Local	Safety-related tripping Response Response PP switch (1) DP switch (2) DP switch (3) DP switch (5) DP switch (7) DP switch (7)	See Safety-related tripping (Page 208)	
Safe tripping, DM-F PROFIsafe	sicherheitsgerichtete abschaltung_1 Safety-related tripping Response Reset safety-related tripping — enabling circuit closed —	See Safety-related tripping (Page 208)	
Control stations	• stouerinheiten • - 51 OFF (Enabled control command) - 52 OFF (Enabled control command) - 00x (Local control) - 00x (Local control) - 00x (Local control) - 00x (Ref. PCPS) - 00x (RCPS) - 00x (RCPS) - 00x (RCP) - 00x (RC)	See Control stations (Page 56)	
Current limits	stromgrenzverte_1 Current limits Trip level-1> (higher limit) Response to trip level-1> (higher limit) Warning level-1> (higher limit) Warning dely -1> (higher limit) Warning dely -1> (higher limit) Programme to trip level-1> (higher limit) Warning dely -1> (higher limit) Warning level-1 Variang level-1 -1 Variang level-1 -1 Variang level-1 -1 Variang level-1 -1 Variang dely-1 Variang dely-1 <td< td=""><td>See Current limit monitoring (Page 132)</td></td<>	See Current limit monitoring (Page 132)	
Test 1 (2)	test 1_1 Test 1 —input	See Test / Reset (Page 195)	
Thermistor	thermistor_1 Response to trip level Response to sensor fault thermistor short circuit — thermistor short circuit —	See Thermistor protection (Page 54)	
Timer 1 (2, 3, 4, 5, 6)	-input output -reset actual value [5] Imit value	See Timer (Page 228)	

Function block	View in SIMOCODE ES (TIA Portal)	Section	
Temperature module 1/2 inputs	Ensor type Response to sensor fault! Out of Range Active sensors	See Temperature module inputs (Page 183)	
Monitoring 0/4-20 mA (analog module 1, 2)	04-20 ma (analogmodul 1)_1 Trip level Trip level active status AM1 trip level 0/4-20mA> AM1 trip level 0/4-20mA> Trip devel active status AM1 trip level 0/4-20mA> AM1 trip level 0/4-20mA> AM1 trip level 0/4-20mA> Marking trip level Warning level Warning level Warning level Warning level Trip level active status Response to warning level Trip level active status Response to rip level Trip level active status Response to rip level Trip level active status Response to rip level Trip level Trip level Warning level	See 0/4 - 20 mA monitoring (Page 143)	
Cos phi monitoring	Cos-Phil Trip level Response to varning level Response to warning level Warning level Warning delay Warning delay	See Cos phi monitoring (Page 139)	
Ground-fault monitoring with ground-fault module 3UF7500	erdschluss_1 Ground suit Response Delay external ground fault — Response Delay	See External ground-fault monitoring with a 3UF7500 ground-fault module and 3UL22 differential current transformer (Page 128)	
Ground-fault monitoring with ground-fault module 3UF7510	edschluss_1 fround fault response external ground fault external ground external ground fault	See External ground-fault monitoring with a 3UF7510 ground-fault module and 3UL23 residual current transformer (Page 129)	
Power monitoring	Wirkdestung_1 Active power Trip level Response to trip level Trip delay Warning level Response to warning level Warning level Response to warning level Warning level Warning level Warning level Warning level	See Active power monitoring (Page 141)	
Monitoring interval for mandatory testing	"Derwachungsintervall für obligatorischen test_1 Monitoring interval for mandatory testing Test interval time until test — Response monitoring period for mandato —	See Monitoring interval for mandatory testing (Page 154)	

Function blocks

Function block	View in SIMOCODE ES (TIA Portal)	Section	
Voltage monitoring	Spannung_1 Voltage Trip level warning level Uc Response tor ip level Trip level Warning level Warning level Warning level Warning level Warning level Warning devel Warning devel Warning devel Warning devel	See Voltage monitoring (Page 136)	
Temperature monitoring 1/2	temperatur (tm1)_1 Trip level T> Trip level T> TM1 warning level T> TM1 trip level T	See Temperature monitoring (analog) (Page 152)	
Undervoltage off (UVO)	Control extenal power failure monitoring type Power failure time Restart time delay	See Power failure monitoring (UVO) (Page 205)	
Truth table 3I/1O (1, 2, 3, 4, 5, 6, 10, 11)	Imput 1 II I2 IS 01 output - -Imput 2 0 0 0 0 0 -Imput 3 0 1 0 0 0 0 1 0 0 1 0 -Imput 3 0 1 0 0 0 1 1 1 0 0 1 0	See Truth table for 3I / 1O (Page 221)	
Truth table 2I/1O (7, 8)	-input 1 1 12 01 output	See Truth table for 2I / 1O (Page 224)	
Truth table 5I/2O (9)	Input 119 5822 Input 119 510 Input 100 000 Input 00000 I	See Truth table for 5I / 2O (Page 225)	
Watchdog	watchdog_1 input put	See Watchdog (Bus monitoring, PLC/PCS monitoring) (Page 215)	
Counter 1 (2, 3, 4, 5, 6)	-input + output -reset Imit value	See Counter (Page 226)	

Function block	View in SIMOCODE ES (TIA Portal)	Section
Time stamp	Existemplung_1 imestamping imput 0 imput 2 imput 3 imput 4 imput 6 imput 6 imput 6 imput 7 Time stamping active	See Timestamping (Page 217)
Cyclic send byte 0 (1, 2/3, 4/9, 10/10)	Tytki. melden byte 0_1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Tytki. melden byte 1 Bit 7 Bit 7 Bit 8 Bit 9 Bit 1 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 7 Bit 7 Bit 7 Bit 8 Bit 9	See Cyclic Send (Page 170)
Cyclic receive byte 0 (1, 2/3, 4/5)	2ykl. steuern byte 0_1 bit 0.0 bit 0.1 bit 0.2 bit 0.3 bit 0.4 bit 0.5 bit 0.6 bit 0.7 bit 0.7 bit 0.8 bit 0.1 bit 0.2 bit 0.3 bit 0.4 bit 0.5 bit 0.7 bit 1.1 bit 1.2 bit 1.4 bit 1.4 bit 1.4 bit 1.7 bit 1.8 bit 1.4 bit 1.7 bit 1.8 bit 1.4 bit 1.4 bit 1.7 bit 1.8 bit 1.4 bit 1.5 bit 1.6 bit 1.6	See Cyclic Receive (Page 187)

Function blocks

Software for parameterization, control, diagnostics and testing

3.1 Software packages

Software overview

With the communication-capable switching devices, the user-friendliness of the parameterization software and good system integration (in other words, the ability to integrate optimally and quickly into the most diverse plant configurations and process automation systems) also play an important role alongside the device functionalities and the hardware configuration.

For this reason, the SIMOCODE pro system provides suitable software tools for consistent, time-saving parameterization, configuring and diagnostics:

- SIMOCODE ES (TIA Portal) for "totally integrated" commissioning and service
- SIMOCODE pro PCS 7 function block library for total integration into PCS 7.

3.1 Software packages

SIMOCODE ES in the TIA Portal

SIMOCODE ES (TIA Portal) is the central software for configuration, commissioning, operation and diagnostics of SIMOCODE pro with PROFIBUS, PROFINET, EtherNet/IP and Modbus RTU.

In addition to SIMOCODE ES, which is based on the Totally Integrated Automation Portal (TIA Portal) central engineering framework, SIMOCODE ES 2007 still continues to be available for PROFIBUS and PROFINET for the commissioning, operation and diagnostics of SIMOCODE pro (see below).

SIMOCODE ES V12, V13 and V14 licenses can also be used for SIMOCODE ES V15.

SIMOCODE ES is integrated seamlessly when further TIA Portal-based software such as STEP 7 or WinCC is available, thus enabling users to achieve a consistent, efficient and intuitive solution for all automation tasks.

But also users of SIMOCODE ES as standalone software will benefit from its advantages.

You can choose between different versions of SIMOCODE ES.

The following software packages are available:

- SIMOCODE ES Basic
- SIMOCODE ES Standard
- SIMOCODE ES Premium.

While SIMOCODE ES Basic is a powerful tool for startup or maintenance personnel, SIMOCODE ES Standard and Premium are the perfect tools for engineers or configuration engineers on account of their larger scope of functions and integrated graphics editor. Unlike the Standard version, SIMOCODE ES Premium also permits parameterization and diagnostics through PROFIBUS and Ethernet. Indication of all operating, service and diagnostics data supplies important information about the current state of the motor and plant at all times – everywhere on the communication bus.

The graphics editor is a part of SIMOCODE ES Standard and SIMOCODE ES Premium. It is based on the Continuous Function Chart (CFC) and adds a powerful tool to the parameterizing interface that enables easy parameterization of devices by drag & drop. Extremely compact documentation of all configured parameters is possible, as is the graphic online presentation of the configured device functions including all signal states during operation.

The software includes a SIMOCODE ES Premium trial license. The Licensee is granted the non-exclusive, non-transferable right to install the software in one (1) instance and to use the installed software for validation purposes in the manner as specified in the order data or in the CoL (see "Type of use"). The time of use shall be limited to 21 days, commencing at the time when the software was first started, unless another time of use is specified in the order data or in the CoL.

You will find a demo version and the latest updates on the Internet at SIMOCODE pro (https://support.industry.siemens.com/cs/ww/en/view/109752321).

The software is offered for downloading in the form of the SIMOCODE ES V15.zip file. After unpacking the *.zip file, read the Readme.htm file first. Then launch the Start.exe program.

SIMOCODE ES 2007

SIMOCODE ES 2007 is the previous version of the SIMOCODE ES (TIA-Portal) software for SIMOCODE pro. It only includes the basic units for PROFIBUS and PROFINET and is not being developed any further.

SIMOCODE ES 2007 provides the SIMOCODE pro motor management system with a user-friendly and clear user interface with which to configure, operate, monitor and test SIMOCODE pro in the field or from a central location via PROFIBUS. By displaying all operating, service and diagnostics data, SIMOCODE ES supplies important information on whether maintenance work is required or, in the event of a fault, helps to prevent faults or to localize and rectify them once they have occurred.

Unnecessary plant downtimes can be prevented by changing parameters online (even during operation).

In addition, the graphical editor enables extremely ergonomic and user-friendly parameterization by dragging and dropping: Inputs and outputs of function blocks can be linked graphically and the parameters set. Configured functions can be described in detail and device parameterization can be documented graphically using comments. This speeds up commissioning and simplifies plant documentation. The optimized user interface and integrated graphic editor are used to assign parameters.

Further functions: Operation, diagnostics, testing, S7 routing, teleservice via MPI, STEP 7 object manager.

The following software packages are available:

- SIMOCODE ES 2007 Basic
- SIMOCODE ES 2007 Standard
- SIMOCODE ES 2007 Premium.

See also Software components (Page 29) for more information.

You will find a demo version and the latest updates on the Internet at SIMOCODE pro (https://www.siemens.com/simocode).

OM SIMOCODE pro Object Manager

The OM SIMOCODE pro Object Manager is a component of SIMOCODE ES. When SIMOCODE ES and OM SIMOCODE pro are installed on a PC / PG, SIMOCODE ES can be called directly from STEP 7 HW Config, This enables simple and universal SIMATIC S7 configuration.

3.1 Software packages

SIMOCODE pro PCS 7 library

The SIMOCODE pro PCS 7 function block library is used to simply and conveniently integrate SIMOCODE pro into the SIMATIC PCS 7 process control system. The SIMOCODE pro PCS 7 function block library contains the diagnostic and driver blocks that correspond to the diagnostic and driver concept of SIMATIC PCS 7 and the elements (symbols and faceplates) necessary for operating and monitoring. The application is integrated by graphic interconnection using the CFC Editor.

Signal processing and technological functions of the SIMOCODE pro PCS 7 function block library are based on the SIMATIC PCS 7 standard libraries (Driver Blocks, Technological Blocks) and are optimized for SIMOCODE pro. Users who until now have configured motor feeders in conventional technology via signal blocks and motor or valve blocks can thus easily change to the SIMOCODE pro PCS 7 block library.

The SIMOCODE pro PCS 7 block library supplied on CD-ROM allows the user to run the required engineering software on an engineering station (single license) including the runtime software for executing the AS modules in an automation system (single license). If the AS blocks are to be used in additional automation systems, the corresponding number of runtime licenses are required, which are supplied without a data medium.

Note

The PCS 7 libraries are subject to continual updating and improvement.

You can download the current service packs and hot fixes from SIMOCODE pro (https://www.siemens.com/simocode)→ Software.

Note

Observe the respective system versions!

GSD file

To integrate SIMOCODE pro as a standard slave into SIMATIC S7 or any standard DP master system (automation system). The latest version is on the Internet at GSD file (<u>https://www.siemens.com/profibus-gsd</u>). Further information on integrating DP slaves can be found in the automation system documentation.

Win SIMOCODE-DP converter

Software tool for converting "old" Win SIMOCODE-DP parameter files (3UF5 device series) into SIMOCODE ES parameter files for SIMOCODE pro.

Software components	MLFB
SIMOCODE ES V15 Standard	3ZS1322-5CC13-0YA5
Floating license	
1 setup DVD	
• 1 license key on USB flash drive ¹⁾	
1 certificate of license	
License download	3ZS1322-5CE13-0YB5
• 1 license key per download ¹⁾	
1 certificate of license by download	
Software Update Service	3ZS1322-5CC00-0YL5
for 1 year with automatic extension	
requires the current software version	
SIMOCODE ES V15 Premium	3ZS1322-6CC13-0YA5
Floating license	
1 setup DVD	
• 1 license key on USB flash drive ¹⁾	
1 certificate of license	
License download	3ZS1322-6CE13-0YB5
• 1 license key per download ¹⁾	
1 certificate of license by download	
Software Update Service	3ZS1322-6CC00-0YL5
for 1 year with automatic extension	
requires the current software version	
SIMOCODE ES 2007 Basic	
Complete device parameterization	
Online access through local device interface	
Floating License for one user	
License key on USB stick, Class A	3ZS1312-4CC10-0YA5
License key download, Class A	3ZS1312-4CE10-0YB5
SIMOCODE ES 2007 Standard	
Complete device parameterization	
Online access through local device interface	
Graphical editor	
Extended monitoring and diagnostic functions	
Floating License for one user	
License key on USB stick, Class A	3ZS1312-5CC10-0YA5
License key download, Class A	3ZS1312-5CE10-0YB5

Software components	MLFB		
Upgrade for SIMOCODE ES as from 2004	3ZS1312-5CC10-0YE5		
Floating License for one user			
Powerpack for SIMOCODE ES 2007 Basic	3ZS1312-5CC10-0YD5		
Floating License for one user			
Software Update Service 1)	3ZS1312-5CC10-0YL5		
for 1 year with automatic extension, requires the current software version.			
SIMOCODE ES 2007 Premium			
Complete device parameterization			
Online access through local device interface			
Graphical editor			
Extended monitoring and diagnostic functions			
Convenience functions			
Online access via PROFIBUS DP			
Online access via remote access			
STEP 7 integration			
Floating License for one user			
License key on USB stick, Class A	3ZS1312-6CC10-0YA5		
License key download, Class A	3ZS1312-6CE10-0YB5		
Upgrade for SIMOCODE ES as from 2004	3ZS1312-6CC10-0YE5		
Floating License for one user			
Powerpack for SIMOCODE ES 2007 Standard	3ZS1312-6CC10-0YD5		
Floating License for one user			
Software Update Service 1)	3ZS1312-6CC10-0YL5		
for 1 year with automatic extension, requires the current software version.			
SIMOCODE pro block library for SIMATIC PCS 7 Version V8 with Advanced Process Librar	y (APL)		
Engineering software V9	3ZS1632-1XX03-0YA0		
for an engineering station (single license), including runtime software for running the AS			
modules in an automation system (single license).			
Runtime license vy	3251032-28803-0180		
required for use of the AS modules of the engineering software V0 or engineering software			
migration V8 on an additional automation system within a plant.			
Upgrade for PCS 7 block library SIMOCODE pro V 8	3ZS1632-1XX03-0YE0		
to version SIMOCODE pro V 9 for an engineering station (single license), including runtime			
software for running the AS modules in an automation system (single license)			
SIMOCODE pro block library for SIMATIC PCS 7 Version V8			
Engineering software V8	3ZS1632-1XX02-0YA0		
for an engineering station (single license), including runtime software for running the AS modules in an automation system (single license)			
Runtime license V8	3ZS1632-2XX02-0YB0		
for running the AS modules in an automation system (single license)			
Required for using the AS modules of the engineering software V8 within a plant			

Software components	MLFB
Engineering software V7	3UF7982-0AA10-0
for an engineering station (single license), including runtime software for running the AS modules in an automation system (single license)	
Runtime license V7	3UF7982-0AA11-0
for running the AS modules in an automation system (single license)	
required for using the AS modules of the engineering software V7 or the engineering software migration V7-V8 on an additional automation system within a plant	
Engineering software migration from V7 to V8	3UF7982-0AA20-0
For upgrading (migrating) an existing engineering software V7 of the SIMOCODE pro block library for PCS 7	

1)

Note

Combo licenses

All available license keys are combo licenses without exception.

Parameters

4.1 Motor protection

4.1.1 Motor protection functions

Description

The motor protection functions "Overload Protection", "Unbalance Protection", "Stalled Rotor Protection", and "Thermistor Protection" are described in the following Chapters:

Overload protection (Page 36)

Unbalance protection (Page 52)

Stalled rotor protection (Page 53)

Thermistor protection (Page 54).

Parameters

4.1 Motor protection

Schematic

The following schematic shows the "Extended Protection" function block ("Overload protection," "Unbalance protection," and "Stalled rotor protection") with optional parameter settings and events.

Figure 4-1 "Extended Protection" function block ("Overload Protection," "Unbalance Protection," and "Stalled Rotor Protection")

1) Adjustable transformation ratio when using interposing transformers with SIMOCODE pro V PB, version $*E03^*$ and higher

2) If tripped due to overload

Adjustable responses "Overload Protection," "Unbalance Protection," and "Stalled Rotor Protection"

Response	Prewarning level "overload protection"	Trip level "overload protection"	Level "unbalance"	Level "stalled rotor protection"
deactivated	Х	Х	Х	X
signal	Х	Х	Х	Х
warn	X	Х	X	Х
trip	_	X	Х	Х
delay	0 to 25.5 s (0.5 s)	—	0 to 25.5 s (0.5 s)	0 to 25.5 s (0.5 s)

Responses for "Overload Protection", "Unbalance Protection" and "Stalled Rotor Protection"

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Note

Deactivate Unbalance Protection in SIMOCODE ES when the load type is set to single-phase!

4.1 Motor protection

4.1.2 Overload protection

4.1.2.1 Description of overload protection functions

SIMOCODE pro protects three-phase or AC motors in accordance with IEC 60947-4-1 requirements. The trip class can be set to eight different settings, ranging from Class 5 to Class 40. Thus, the tripping time can be adapted precisely to the power-up behavior of the motor, improving utilization of the motor capacity. Additionally, the "Thermal motor model" and time to overload trip are calculated and made available to the control system. After an overload trip, the remaining cooling down period is displayed (see Class). The motor current is saved in the case of an overload trip.

Depending on the control function, the set current I_s is separately parameterizable for one or two speeds (I_s1 and I_s2).

The rated motor current is usually set with **set current** I_s1 . This value can be found on the type plate of the motor. It is the basis for calculating the overload trip characteristic curve. The **Set current** I_s2 is only necessary for motors with 2 speeds so that adequate overload protection for the higher speed is also ensured. Generally, I_s2 should be set higher than I_s1 .
4.1.2.2 Set current Is1

Setting ranges for current setting Is1

Range: Depends on the selected current measuring module or current / voltage measuring module.

Current setting I_s1 when using a current measuring module or a 1st generation current / voltage measuring:

- 0.3 to 3 A (default: 0.3)
- 2.4 to 25 A
- 10 to 100 A
- 20 to 200 A
- 63 to 630 A

Current setting I_s1 when using a 2nd generation current / voltage measuring module:

- 0.3 to 4 A (default: 0.3)
- 3 to 40 A
- 10 to 115 A
- 20 to 200 A
- 63 to 630 A

Transformation ratio - active

When using an interposing transformer, or if the main supply cable is looped several times through the current measuring module or the current / voltage measuring module, you can enter the transformation ratio of the interposing transformer. Activate the checkbox if you wish to use this option. The parameterized current setting continues to correspond here to the actual rated motor current and does not have to be converted.

The transformation ratio is calculated from the ratio between the rated motor current [A] and the measured current [A] or any multiple of the ratio.

Note

This parameter is only available when using SIMOCODE pro V PB basic unit above version *E03*.

Transformation ratio - primary

Enter the primary current here, with the "Transformation ratio - active" checkbox activated. Range: 0 to 8191.875 (default: 0).

Transformation ratio - secondary

Enter the secondary current here, with the "Transformation ratio - active" checkbox activated. Range: 0 to 15 (default: 0).

4.1.2.3 Set current ls2

Setting ranges for current setting Is2

Range: Depends on the selected current measuring module or current / voltage measuring module.

Current setting I_s2 when using a current measuring module or a 1st generation current / voltage measuring module:

- 0.3 to 3 A (default: 0.3)
- 2.4 to 25 A
- 10 to 100 A
- 20 to 200 A
- 63 to 630 A

Current setting I_s1 when using a 2nd generation current / voltage measuring module:

- 0.3 to 4 A (default: 0.3)
- 3 to 40 A
- 10 to 115 A
- 20 to 200 A
- 63 to 630 A

Transformation ratio - active

When using an interposing transformer, or if the main supply cable is looped several times through the current measuring module or the current / voltage measuring module, you can enter the transformation ratio.

Activate the checkbox if you wish to use this option. The parameterized current setting continues to correspond here to the actual rated motor current and does not have to be converted.

The transformation ratio is calculated from the ratio between the rated motor current [A] and the measured current [A] or any multiple of the ratio.

Note

This parameter is only available when using SIMOCODE pro V PB above version *E03*.

Transformation ratio - primary

Enter the primary current here, with the "Transformation ratio - active" checkbox activated. Range: 0 to 8191.875 (default: 0).

Transformation ratio - secondary

Enter the secondary current here, with the "Transformation ratio - active" checkbox activated. Range: 0 to 15 (default: 0).

Note

In the case of motors with two speeds, the same or different transformation ratios can be set for each speed, depending upon whether the same or two different interposing transformers is/are used for each speed.

4.1.2.4 Application example

Example 1:

Rated motor current: 700 A. A 3UF18 68-3G current transformer (205 to 820 A) is used as interposing transformer (transformation ratio 820 : 1), the secondary side is looped once through a current measuring module (0.3 A to 3 A): Transformation ratio for $I_s = 820 : 1$; $I_s = 700$ A

Settings (primary and secondary)

- Set current I_s1: 700 A
- Is1 Transformation ratio primary: 820
- Is1 Transformation ratio secondary: 1

Example 2:

Rated motor current: 225 A. A 3UF1868-3G current transformer (205 to 820 A) is used as interposing transformer (transformation ratio 820 : 1), the secondary side is looped twice through a current measuring module (0.3 A to 3 A): Transformation ratio for $I_s = 820 : 2$; $I_s = 225$ A

Settings (primary and secondary)

- Set current I₅1: 225 A
- I_s1 Transformation ratio primary: 820
- I_s1 Transformation ratio secondary: 2

Example 3:

The motor cable is looped twice through a current measuring module (0.3 to 3 A, for a motor with a rated current of 0.25 A): Transformation ratio for $I_s = 1 : 2$; $I_s = 0.25$ A

Settings (primary and secondary)

- Set current Is1: 0.25 A
- I_s1 Transformation ratio primary: 1
- Is1 Transformation ratio secondary: 2

4.1.2.5 Further overload protection parameters

Class

The Class (trip class) defines the maximum time within which SIMOCODE pro must trip from cold at 7.2 times the current setting I_s (motor protection to IEC 60947). SIMOCODE pro meets the requirements of tolerance band E according to IEC / EN 60947-4-1 in respect of the accuracy of the tripping times. Please note that with startups > "Class 10", the permissible AC3 current of the contactor may have to be reduced (derated), i.e. you must select a larger contactor.

Overload characteristics for 2nd generation current / voltage measuring modules (e.g. 3UF7110-1AA01-0)

The following figure shows trip classes 5, 7, 10 (d), 15, 20, 25, 30, 35 and 40 for 3-pole balanced loads:

Figure 4-2 Trip classes for 3-pole loads, 2nd generation current / voltage measuring modules

The following figure shows trip classes 5, 7, 10 (d), 15, 20, 25, 30, 35, and 40 for 2-pole loads:

Figure 4-3 Trip classes for 2-pole loads, 2nd generation current / voltage measuring modules

Overload characteristics for current measuring modules, 1st generation current / voltage measuring modules (e.g. 3UF7110-1AA00-0) and 2nd generation current / voltage measuring modules in compatibility mode (e.g. 3UF7110-1AA01-0)

The following figure shows trip classes 5, 10 (d), 15, 20, 25, 30, 35 and 40 for 3-pole balanced loads:

Figure 4-4 Trip classes for 3-pole balanced loads, current measuring modules and 1st generation current / voltage measuring modules

The following figure shows trip classes 5, 10 (d), 15, 20, 25, 30, 35 and 40 for 2-pole loads:

Figure 4-5 Trip classes for 2-pole loads, current measuring modules and 1st generation current / voltage measuring modules

Note

Type of tripping characteristic

If a 1st generation 3UF711*-1AA00-0 current / voltage measuring module is configured in a parameterization, but a 2nd generation 3UF711*-1AA01-0 current / voltage measuring module is used, the tripping characteristic remains that of the 1st generation current / voltage measuring measuring module.

Merely replacing the measuring module hardware does not change the tripping behavior.

Note

Tripping characteristics

The latest tripping characteristics for SIMOCODE pro can be found inSiemens Industry Online Support (SIOS) (https://www.siemens.com/sirius/support).

Response to overload

The SIMOCODE pro response to overload can be additionally adjusted here.

Further information: See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Motor protection functions (Page 33).

Note

With motors for EEx e applications, the response must remain set to "trip"!

Cooling-down period

The cooling down period is the amount of time that must elapse before an overload trip can be reset. This is usually 5 minutes. The thermal memory (motor model – see below) is deleted after the cooling down period elapses. Supply voltage failures of SIMOCODE pro during this time extend the specified time correspondingly.

Range:

Cooling down period: 60 to 6553.5 s (default: 300 s).

Thermal motor model (thermal memory)

"At operating temperature" state

In the "at operating temperature" state, the tripping times are reduced by the factors listed in the table. These factors apply to 3-pole balanced loads from class 5 through class 40.

 Table 4-1
 Factors (quadratic) for trip times at operating temperature for 2nd generation current / voltage measuring modules

x ls	Preload	Preload as a percentage of the current setting I₅					
	0	20	40	60	80	100	
1.15	1	0.94	0.87	0.77	0.64	0.40	
1.5	1	0.87	0.73	0.57	0.38	0.16	
2	1	0.85	0.69	0.51	0.33	0.13	
3	1	0.83	0.66	0.49	0.31	0.12	
4	1	0.83	0.65	0.48	0.30	0.12	
5	1	0.83	0.65	0.47	0.29	0.11	
6	1	0.82	0.65	0.47	0.29	0.11	
7.2	1	0.82	0.65	0.47	0.29	0.11	
8	1	0.82	0.65	0.47	0.29	0.11	
9	1	0.82	0.65	0.47	0.29	0.11	
10	1	0.83	0.65	0.47	0.29	0.11	

Parameters

4.1 Motor protection

x Is	Preload as a percentage of the current setting Is					
	0	20	40	60	80	100
1.15	1	0.56	0.51	0.44	0.34	0.18
1.5	1	0.75	0.64	0.52	0.36	0.16
2	1	0.77	0.64	0.49	0.33	0.14
3	1	0.77	0.63	0.47	0.30	0.12
4	1	0.76	0.62	0.46	0.29	0.12
5	1	0.76	0.62	0.46	0.29	0.11
6	1	0.76	0.60	0.45	0.29	0.12
7.2	1	0.77	0.61	0.45	0.28	0.11
8	1	0.76	0.61	0.45	0.28	0.11
9	1	0.77	0.60	0.45	0.28	0.11
10	1	0.76	0.60	0.45	0.28	0.12

 Table 4-2
 Factors (linear) for trip times at operating temperature for 1st generation current / voltage measuring modules

The following applies for the linear motor model:

When the rated motor current (I_s) is at 100%, the value of "Thermal motor model" is 87% (1/1.15 x 100%) in a steady state, and 100% at the moment of an overload trip.

Example:

You have operated and switched off a motor with current setting 100% Is.

You immediately switch the motor back on. This causes an overload trip with 2 x I_s , Class 10.

- Tripping time in cold state: approximately 40 s (acc. to tripping characteristic)
- Factor for tripping time with preload 100% Is: 0.19 (see Table)
- Reduced tripping time: 0.19 x 40 s = 7.6 s.

Pause time

The pause time is the specified time for the cooling down response of the motor when tripped under normal operating conditions (not in the case of an overload trip). After this interval, the thermal memory in SIMOCODE pro is erased and a new cold start is possible. This means that many startups can be performed in a short space of time.

The following schematic shows the cooling down response with and without pause time:

Figure 4-6 Cooling down response with and without pause time

Note

Both the motor and the switching devices must be dimensioned specifically for this load!

Pause time: 0 to 6553.5 s (default: 0)

Load type

You can select whether SIMOCODE pro is to protect a 1-phase or a 3-phase load. For a 1-phase type of load, the internal ground-fault monitoring and the unbalance protection must be deactivated. Phase failure monitoring is deactivated automatically.

Load type 1-phase, 3-phase (default)

Note

Decoupling module

When using a 1st generation current / voltage measuring module a decoupling module may be necessary.

See table "Decoupling module requirements for star networks" in chapter 8.6 "Decoupling module (DCM) for 1st generation current / voltage measuring modules (e.g. 3UF711.1AA000)" in SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

Delay prewarning

The "Delay" parameter (default: 0.5 s) defines the length of time for which the prewarning level (1.15 x I_s) must be permanently exceeded before SIMOCODE pro will execute the desired response. If no setting is made, there will be no response. In the event of a loss of phase or an unbalance > 50%, the prewarning level will be reached earlier, at approximately 0.85 x I_s .

Reset

If the "Reset" parameter is set to "Auto," the "Overload," "Overload + Unbalance," and "Thermistor" faults will be acknowledged automatically:

- If the cooling down period has expired.
- If the thermistor value has dropped back down to the specified resetting value.

If the "Reset" parameter is set to "Manual", the faults must be acknowledged by a reset signal:

- "TEST/RESET" button on the basic unit
- "TEST/RESET" button on operator panel
- Standard functions "Reset."

For this, the "Reset - Input" (plugs) must be connected to the corresponding sockets, e.g. using reset via bus.

Reset: Manual, Auto (default: manual).

Unexpected restart of the motor

The "Auto-Reset" mode must not be used for applications where an unexpected motor restart may cause personal injury or damage to property.

See also

Tripping characteristics 3UF7 (<u>https://support.industry.siemens.com/cs/search?search=3UF7&type=Characteristic&lc=en-WW</u>)

4.1.3 Unbalance protection

Description

The extent of the phase unbalance can be monitored and transmitted to the control system. A definable and delayable response can be triggered when an adjustable limit has been overshot. If the phase unbalance is more than 50 %, the tripping time is also automatically reduced in accordance with the overload characteristic since the heat generation of the motors increases in asymmetrical conditions.

Phase balance formula

The phase unbalance is calculated using the following equation:

Phase unbalance = $\frac{\max([I_{max} - I_{avg}]; [I_{min} - I_{avg}])}{I_{avg}}$ $I_{avg} = \frac{I1 + I2 + I3}{3}$

Level

The level of unbalance to which SIMOCODE pro should react is set here.

Level: 0 to 100 % (default: 40 %)

Response

Here you can choose the response of SIMOCODE pro in case of phase unbalance: See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Motor protection functions (Page 33).

Delay

The unbalance level must be exceeded for the period of the set delay time before SIMOCODE pro executes the desired response. If no setting is made, there will be no response.

Setting range: 0 to 25.5 s (default: 0.5 s).

4.1.4 Stalled rotor protection

Description

If the motor current rises above an adjustable stalled rotor protection level (current threshold), a defined and delayable response can be configured for SIMOCODE pro. In this case, for example, the motor can be shut down independently of the overload protection. The stalled rotor protection is only active after the parameterized class time has elapsed, e.g. for Class 10 after 10 seconds, and prevents unnecessarily high thermal and mechanical loads as well as premature aging of the motor.

Level

When the stalled rotor level is exceeded, SIMOCODE pro reacts according to the selected response.

Level: 0 to 1020 % of I_s (default: 0).

Note

Rounding

Intermediate values are automatically rounded.

Response

Here you can determine the response to violation of the stalled rotor level: See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Motor protection functions (Page 33).

Delay

The "Delay" parameter determines the length of time that the stalled rotor level must be permanently exceeded before SIMOCODE pro executes the desired response. If no setting is made, there will be no response. Setting range: 0 to 25.5 s (default: 0.5 s).

4.1.5 Thermistor protection

Description

Thermistor protection is based on a direct temperature measurement in the motor via binary PTC thermistors which can be connected to the SIMOCODE pro basic unit.

Thermistor protection is used in the case of:

- Motors with high switching frequencies
- Converter operation
- Motors with heavy starting
- Intermittent duty and/or braking operation
- Restricted air supply
- Speeds below the rated speed.

In this case, the sensors are mounted in the winding slot or bearing of the motor.

Schematic and characteristic curve

The resistance of the thermistors increases rapidly (abruptly) when the temperature limit is reached.

Figure 4-7 Thermistor function block (thermistor protection)

Response

• Overtemperature:

Here you can select the SIMOCODE pro response to violation of the trip level for overtemperature.

Note

With motors for EEx e applications, the response must be set to "trip"!

• Sensor fault (sensor circuit fault): Here you can select the SIMOCODE pro response in the case of a short circuit or open circuit in the thermistor sensor cable.

Table 4-3 "Thermistor protection, binary" response

Response	Trip level	Sensor fault
deactivated	_	X
signal	X	X
warn	X	X (d)
trip	X (d)	X

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

4.2 Motor control

4.2 Motor control

4.2.1 Control stations

4.2.1.1 Description of functions of control stations

Control stations - overview

Control stations are places from which control commands are issued to the motor. The "Control Stations" function block is used for administration, switching and prioritization of these different control stations. SIMOCODE pro allows parallel administration of up to four different control stations. Dependent on the set control function, up to five different control commands can be transmitted from every control station to SIMOCODE pro.

Control stations can be:

- Local in the direct vicinity of the motor; control commands via pushbuttons.
- PLC/PCS or PLC/PCS [PN], switching commands are issued by the automation system (remote).
- PC or PC/OPC UA [HMI], control commands are issued via an operator control station or via PROFIBUS DPV, OPC UA or PROFINET with the SIMOCODE ES software.
- **Operator panel**, control commands are issued via the buttons of the operator panel in the control cabinet door.

Examples of control commands:

- Motor ON (ON >), Motor OFF (OFF) for a direct starter
- Motor CCW (ON <), Motor OFF (OFF), Motor CW (ON >) for a reversing starter
- Motor SLOW (ON >), Motor FAST (ON >>), Motor OFF (OFF) for a Dahlander circuit.

The plugs of the "Control Stations" function block must be connected to any sockets (e.g. binary inputs on the basic unit, control bits from the bus, etc.) for the control commands to take effect. Up to five different control commands can come from each control station. Up to five plugs (plug ON <<, ON <, OFF, ON >, ON >>) are available on the function block for each control station. The number of active plugs depends on the control function selected. With a direct starter, for example, only the plugs "ON >" and "OFF" are active.

Control stations

• Control station - local control: In this case, the command devices are usually in the immediate vicinity of the motor and are wired to the inputs of SIMOCODE pro. The plugs of the "Control Stations" function block must be connected to any sockets (normally the function blocks for the basic units or the digital module inputs – BU Inputs, DM Inputs) for the control commands to take effect.

Note

The OFF command "LC OFF" is 0-active. This ensures that SIMOCODE pro shuts the motor down safely if an open circuit occurs in the supply cable, for example. The precondition is that the control station is active.

• PLC/PCS or PLC/PCS [PN] control station: This control station is primarily intended for control commands from the automation system (PLC / PCS) via the cyclic receive telegram of the bus. The plugs of the "Control Stations" function block must be connected to any sockets, typically with cyclic receive, for the control commands to take effect.

• PC or PC/OPC UA [HMI] control station: This control station is primarily intended for switching commands on an arbitrary PC that, along with the automation system, is used as a second master on PROFIBUS DP or that, as a client, accesses the data made available by SIMOCODE pro, as server, via OPC UA. The control commands are sent via the Acyclic receive telegram from PROFIBUS DPV1 or are transferred using a client-server connection via OPC UA.

Note

If the SIMOCODE ES or SIMATIC PDM PC software is connected to SIMOCODE pro via communication bus, its control commands automatically take effect via the PC [DPV1] or "PC PC/OPC UA" control station. At the same time, the enabled commands for this control station also take effect for SIMOCODE ES.

 Control station - operator panel: This control station is primarily intended for control commands issued via the buttons on the 3UF72 operator panel, which is mounted in a control cabinet door, for example. The plugs of the "Control Stations" function block must be connected to any sockets (normally to the function block for the buttons of the operator panel - OP buttons) for the control commands to take effect.

Note

Control functions with two speeds

Since the operator panel only has four buttons for controlling the motor feeder, one button must be used as a speed changeover button for control functions with two speeds and two directions of rotation. For this purpose, this button must be assigned to the internal control command "[OP]<>/<<>>".

Note

"Operator panel [OP]" control station

If the SIMOCODE ES PC software on a programming device is connected to SIMOCODE pro via the system interface, its control commands automatically take effect via the "Operator panel [OP]" control station. At the same time, the enabled commands for this control station also take effect for SIMOCODE ES.

4.2 Motor control

4.2.1.2 Operating modes and mode selectors

Operating modes

You can use the control stations either individually or in combination. There are four different operating modes available for selection:

- Local 1
- Local 2
- Local 3
- Remote / Automatic: In this operating mode, the system must communicate via PLC.

Not all control stations are usually connected. If more than one control station (e.g. local and PLC / PCS) is connected, it makes sense and is also mandatory to operate the control stations selectively. Four operating modes are provided for this purpose which can be selected via two control signals (mode selectors). For each individual control station in every operating mode, it can be stipulated if "ON commands" and / or "OFF commands" are to be accepted. The operating modes are controlled in such a way that only one operating mode is active at any one time.

Example: There are three operating modes in a system:

Operating mode	Description
Key-operated switch operation, e.g. Local 1	Only local control inputs are permitted! All other control stations are disabled.
Manual operation, e.g. Local 3	Only operator panel control commands and local control commands can be issued.
Remote operation, e.g. remote / automatic	Only PLC/PCS control commands are permitted; only OFF commands are permitted locally.

Table 4-4 Operating modes

The key-operated switch must be read in via an input to select these operating modes. The remote switching operation should be controlled via the bus. The key-operated switch operation has priority over all other operating modes.

Mode selector

The S1 / S2 mode selectors are used to switch between the operating modes "Local 1," "Local 2," "Local 3," and "Remote/Automatic." To do this, plugs S1 and S2 must be connected to any sockets (e.g. device inputs, communication bus control bits, etc.).

The table below shows the operating modes depending on the signal states of mode selectors S1 and S2:

Table 4- 5	Operating	modes	depending	on S1	and S2
------------	-----------	-------	-----------	-------	--------

Input	Operating mode				
	Local 1	Local 2	Local 3	Remote / Automatic	
S1	0	0	1	1	
S2	0	1	0	1	

The different operating modes for enabling the control stations can be used to specify the switch authorizations for the individual control stations:

- Local control [LC]
- PLC/PCS [DP] or PLC/PCS [PN]
- PC [DPV1] or PC/OPC-UA [HMI]
- Operator panel (OP)

Only the following are active:

- the operating mode set by plugs S1 and S2 of the "Control Stations" function block and
- the enables selected there.

Example of a dynamic mode selection as a function of time:

S1	0	1	1	1	0	
S2	0	1	0	1	0	
	Key-operatec switch	Remote operation	Manual operatio	n Remote operation	Key-operated switch	
	Local 1	Remote	Local 3	Remote	Local 1	
	0		-			Time t

Figure 4-8 Example - mode selection

4.2 Motor control

4.2.1.3 Enables and enabled control command

Enables

Enables, which have to be activated, are assigned to the "ON" and "OFF" control commands for each control station in every operating mode. That is, depending on the mode, it is possible to define for each control station whether it is permitted to switch the motor on only, off only, or on and off. The relevant checkbox is selected in the "Control stations" dialog box in SIMOCODE ES.

Diagram of enables and enabled control command

The following diagram shows the "Control Stations" function block and the operating modes:

Example of enabled commands

The following diagram shows an example of enabled commands for the "Local 2" operating mode, "Dahlander reversing starter" control function:

Figure 4-9 Example of enabled commands

In the example, the motor can only be switched on and off in the "Local 2" operating mode via the buttons (local) connected to the inputs of the basic unit and the digital module.

4.2 Motor control

4.2.1.4 Control station settings

Table 4- 6 Control station settings

Control stations	Description				
LC	Activates the control station via any signal (any sockets, but typically device inputs).				
ON <<	The "OFF" plug is 0-active on the control station [LC].				
ON <					
OFF					
ON >					
ON >>					
PLC/PCS	Activates the control station via any signal				
ON <<	(any sockets, but typically control bits from the bus).				
ON <					
OFF					
ON >					
ON >>					
PC	Activates the control stations via any signal				
ON <<	(any sockets, but typically control bits from the bus).				
ON <					
OFF					
ON >					
ON >>					
Operator panel [OP]	Activates the control stations via any signal				
<>/<<>>	(any sockets, but typically buttons on the operator panel)				
ON <					
OFF					
ON >					
ON >>					
Mode selector	For switching between the 4 operating modes Local 1, Local 2, Local 3 and remote with any				
S1	signals (any sockets, e.g. device inputs, control bits from/via the bus.).				
S2					

4.2.2 Control functions

4.2.2.1 Overview and description of control functions

Control functions - overview

Depending on the device series, the system provides the following control functions:

Control function	SIMOCODE pro						
	С	S	V PB	V MB RTU	V PN	V EIP	
Overload relay (Page 75)	~	1	✓	\checkmark	\checkmark	1	
Direct starter (direct-on-line starter) (Page 77)	\checkmark	1	\checkmark	1	\checkmark	1	
Reversing starter (Page 79)	~	1	✓	\checkmark	\checkmark	1	
Circuit breaker (Page 81)	~	1	✓	\checkmark	\checkmark	1	
Star-delta starter (Page 84)		1	\checkmark	\checkmark	\checkmark	1	
Star-delta reversing starter (Page 88)	_	—	\checkmark	1	\checkmark	1	
Dahlander starter (Page 92)		—	✓	\checkmark	\checkmark	1	
Dahlander reversing (Page 95)	_	_	~	~	1	1	
Pole-changing starter (Page 99)	_	—	~	~	1	~	
Pole-changing reversing starter (Page 102)	_	—	~	~	\checkmark	1	
Solenoid valve (Page 105)		—	✓	1	\checkmark	1	
Positioner 1 to Positioner 5 (Page 107)	_	—	\checkmark	1	\checkmark	1	
Soft starter (Page 112)	_	1	✓	\checkmark	\checkmark	1	
Soft starter with reversing contactor (Page 114)	_	_	~	1	\checkmark	1	

Table 4-7 Control functions

Control functions (e.g. direct starters, reversing starters) are used for controlling load feeders. They are characterized by the following important features:

- Monitoring the switch-on / switch-off process
- Monitoring the ON / OFF status
- Tripping if a fault occurs.

SIMOCODE pro monitors these statuses using the "Feedback ON" auxiliary control input, which is usually derived directly from the current flow in the main circuit, via the current measuring modules.

Parameters

4.2 Motor control

All the necessary interlocks and logic operations for the respective applications are already implemented in the control functions. Control functions include:

- Plugs for control commands ON <<, ON <, OFF, ON >, ON >> that are usually connected with the "Enabled control command" sockets.
- Auxiliary control inputs (plugs), e.g. Feedback ON
- Sockets for
 - Contactor controls QE1 to QE5.
 - Displays (lamp controls) QL, QLS.
 - Statuses, e.g. "Status ON <<, Status ON >>."
 - Faults, e.g. "Fault feedback (FB) ON," "Fault antivalence."
- Settings, e.g. interlocking time, non-maintained command mode ON / OFF, etc.
- A logic component with all necessary interlocks and connections for the control function.
- Like control functions, the motor protection with its parameters and signals is active "at a higher level in the background". Motor protection and thermistor protection are independent functions that switch off the motor when activated via the control functions. Detailed description: See Chapter Motor protection (Page 33).

Control function schematic

The following schematic shows a general view of the control function ("Protection/Control" function block):

Figure 4-10 "Protection/Control" function block

**) See also Chapter Motor protection (Page 33)

Contactor controls

The QE contactor controls are switched dependent on the incoming control commands and taking the specified control function into consideration including all corresponding interlocks, feedbacks, corresponding parameters and the higher-level motor protection. In general, the QE contactor controls are directly connected to the outputs of the basic unit or the digital modules and switch the connected contactors using relays. The number of usable QE contactor controls is directly dependent on the set control function.

Parameters

4.2 Motor control

Lamp controls and status information:

The feeder status feedback is signaled via the status information or the QL lamp controls. They are all directly dependent on the status of the auxiliary control input "FB ON". The number of usable lamp controls and status information is directly dependent on the specified control function.

Feeder status feedback:

- Status information, e.g. "Status ON <": These are transmitted, for example, via bus to the automation system and signal the status of the feeder there.
- Displays (lamp control) "Display QLE <": These can, for example, activate a signal lamp or a pushbutton lamp for status display

Note

If the motor is running in test operation, the QLE ... / QLA lamp outputs show a different response (e.g. flashing).

- In addition to the status signals, the "QL..." lamp controls additionally indicate the following:
 - Unacknowledged fault (lamp output general fault QLS is flashing)
 - Saving change-over command (QLE lamp outputs are flickering)
 - Lamp test: All QL outputs are activated for approx. 2 s.

Extended status and fault messages

- Additional status information:
 - Start active: If "Motor" is selected as the load type, this signal is present during the start process of the motor for the duration of the specified class time (e.g. 10 s for Class 10). Exceptions are the "Overload relay" and "Solenoid valve" control functions.
 - Interlocking time active: For control functions with a change in the direction of rotation, the signal remains present until the specified interlocking time has elapsed.
 - Change-over pause active: For the "Dahlander starter," "Pole-changing starter," and "Star-delta" control functions, the signal is present after changeover until the specified time has elapsed.
- Additional status information for the "Positioner" or "Solenoid valve" control function:
 - Feedback CLOSED (FC)
 - Feedback OPEN (FO)
 - Torque CLOSED (TC)
 - Torque OPEN (TO).

These feedback signals specify the present status of the corresponding limit switch and/or torque switch. The amount of usable status information is directly dependent on the selected control function.

- Additional fault information for the "Positioner" or "Solenoid valve" control function:
 - Stalled positioner: The torque switch has been activated before the corresponding limit switch. The positioner may have stalled.
 - Double 0: Both torque switches have responded ("positioner" control function only)
 - Double 1: Both limit switches have responded.
 - End position: Positioner or valve has left the end position without receiving a control command
 - Antivalence: The changeover contacts of the limit switches do not issue an antivalent signal ("Positioner 5" control function only).

Figure 4-11 "Extended control" function block

4.2 Motor control

4.2.2.2 Application selection, settings and definitions of control functions

Application selection

If you select and load a preset application via the "Add new device" command (e.g. the reversing starter) in SIMOCODE ES, all protective functions, links and interlocks for the reversing starter are set up in the basic unit. These can be flexibly adapted and expanded.

Sirius Device Wizard - Con	Application Select an application for the device.	×
	▼ Standard	^
	Overload relay	
Application	Direct starter	
	Reversing starter	=
	Circuit breaker (MCCB)	
	Star-delta starter	
	Star-delta reversing starter	
	Dahlander	
	Dahlander reversing starter	
	Pole-changing starter	
	Pole-changing reversing starter	
	Solenoid valve	~
	Name: Reversing starter	
	Description	
	SIMOCODE pro can control the direction of rotation of the motor (forwards and backwards) with the function.	s control
	<u> </u>	Cancel

Figure 4-12 Application selection with SIMOCODE ES

Depending on the basic unit used, you can choose from among the following control functions:

Table 4-8 Application selection	วท
---------------------------------	----

Control function	Short Description	Further information
Overload relay	SIMOCODE pro responds like an overload relay.	See "Overload relay" control function (Page 75)
Direct starter (direct-on-line starter)	Switching motor on and off	See "Direct starter" control function (Page 77)
Reversing starter	Control of direction of rotation of motors (forward, reverse)	See "Reversing starter" control function (Page 79)
Molded-case circuit breaker (MCCB)	Switches a circuit breaker on and off (e.g. 3WL, 3VL)	See "Molded case circuit breaker (MCCB)" control function (Page 81)
Star-delta starter	To limit the starting current, SIMOCODE pro initially starts a motor with a star-connected stator winding and then switches it to delta.	See "Star-delta starter" control function (Page 84)
Star-delta reversing starter	Star-delta starter with both directions of rotation (forward, reverse)	See "Star delta reversing starter" control function (Page 88)
Dahlander starter	Control of motors with only one stator winding in two speed steps (fast, slow)	See Control function "Dahlander starter" (Page 92)
Dahlander reversing starter	Dahlander starter with both directions of rotation (clockwise, counter-clockwise)	See Control function "Dahlander reversing starter" (Page 95)
Pole-changing starter	Control of motors with two stator windings in two speed steps (fast, slow)	See "Pole-changing starter" control function (Page 99)
Pole-changing reversing starter	Pole-changing starter with both directions of rotation (forward, reverse)	See "Pole-changing reversing starter" control function (Page 102)
Solenoid valve	Control of a solenoid valve	See "Solenoid valve" control function (Page 105)
Positioner (1, 2, 3, 4, 5)	Activation of positioners or actuators. Versions 1 to 5	See "Positioner" control function (Page 107)
Soft starter	Control of the 3RW soft starter	See "Soft starter" control function (Page 112)
Soft starter with reversing contactor	Control of the 3RW soft starter, including an additional reversing contactor	See "Soft starter with reversing contactor" control function (Page 114)

4.2 Motor control

Parameters for control functions

Table 4- 9General settings and definitions

Parameter	Description				
ON <<, ON <, OFF, ON >, ON >>	Are usually connected with the "Enabled control command" sockets of the "Control Station" function block. From there, the control commands come from the different control stations. The number of active inputs depends on the control function chosen. With a direct starter, for example, only the inputs "ON >" and "OFF" are active.				
	Default setting: Connected				
FB ON ¹⁾	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - Motor current flowing" socket) as factory default. An auxiliary contact from the contactor is not required for signaling. Depending on the control function chosen, this state is signaled by the QLE1 to QLE5 displays and by the "Status - ON <<, - ON <, - ON >, - ON >, - ON >>" signals.				
	"No motor current flowing" means: the motor is switched off. An auxiliary contact from the contactor is not required for signaling. This state is signaled by the QLA display and the "Status - OFF" signal.				
	Default setting: Status - Motor current flowing				
FC, FO, TC, TO	Auxiliary control inputs for the "Positioner" and "Solenoid valve" control functions that are normally connected with the inputs of the basic unit or the digital modules and are used to query the present status of the torque switch and the limit switches that are hard-wired to the inputs.				
Non-maintained command mode	 Deactivated (default setting): The control command on the corresponding plug of the control stations "ON <, ON <, ON >, ON >>" is saved. It can only be revoked by an "OFF" control command from the corresponding control station. An auxiliary contact for locking the contactor is not required. Motor feeders are usually operated in locking mode. Locking is preset. Activated: Depending on the control function chosen, non-maintained command 				
	mode acts on the plugs of all control stations "ON <, ON <, ON >, ON >>". A control command is only effective as long as there is a "high signal".				
Saving change-over command	 Deactivated (default setting): Change-over commands for switching from one direction of rotation / rotational speed to the other are only implemented with a previous "OFF" and after the interlocking time / change-over pause has elapsed. This setting is usually used and is preset. 				
	 Activated: Change-over commands for switching from one direction of rotation / rotational speed to the other are implemented without a previous "OFF" once the interlocking time / change-over pause has elapsed. If the selected direction / speed cannot be executed immediately due to a parameterized interlocking time / change-over pause, the selection is signaled by flickering QLE displays. Your selection can be cancelled at any time with "OFF". 				
Separating DM-FL/FP function from control function	• Deactivated (default setting): Safety-related tripping via the DM-F modules also affects the SIMOCODE pro control function, so that the contactor control is always tripped, too. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.				
	• Activated: Safety-related tripping via the DM-F modules does not affect the SIMOCODE pro control function, so that the contactor control is not tripped. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.				
Parameter	Description				
--	--	--	--	--	--
Load type	You can select from the following:				
	Motor (default)				
	Resistive load (e.g. heater): Since overcurrent generally does not flow during				
	start-up on a resistive load, the "Start active" status is not signaled. In this ca				
	the startup override does not occur for the "signal," "warn," and "tripping"				
	functions.				
Feedback time ¹⁾	SIMOCODE pro monitors the status of the feeder (ON or OFF) via FB ON. If the status of FB ON changes - without a corresponding switching command - "Fault - Feedback (FB)" switches off the feeder.				
	Default setting: 0.5 s				
	The feedback time can be used to suppress such "feedback faults" for a defined period of time, e.g. in the case of network switchover.				
	When the motor is switched off, SIMOCODE pro continuously checks whether FB ON = 0. If the current flows longer than the set feedback time without the "ON" control command being issued, a fault message "Fault - feedback (FB) ON" is issued. The contactor controls can only be connected after the fault has been rectified.				
	When the motor is switched on, SIMOCODE pro continuously checks whether FB ON = 1. If no current flows for longer than the set feedback time without the "OFF" control command being issued, a fault message "Fault - feedback (FB) OFF" is issued. The contactor controls are deactivated.				
Execution time ¹⁾	SIMOCODE pro monitors the switch-on and switch-off process. The switch-on or				
	switch-off process must be completed within this time.				
	Default setting: 1.0 s				
	"Fault - Execution ON command" will be issued. SIMOCODE pro must be able to detect control time. Otherwise, the fault message "Fault - Execution ON command" will be issued. SIMOCODE pro deactivates the contactor controls.				
	After the "OFF" control command is issued, SIMOCODE pro must not be able to detect current in the main circuit after expiry of the execution time. Otherwise, the fault message "Fault - Execution OFF command" will be issued. The contactor controls can only be connected after the fault has been rectified.				
Interlocking time	SIMOCODE pro prevents, e.g. in the case of reversing starters, both contactors from switching on at the same time. Changing from one direction of rotation to the other can be delayed via the interlocking time.				
	Default setting: 0 s.				
Change-over pause	With the control functions "Dahlander starter" and "Pole-changing starter", switching from FAST to SLOW can be delayed by the time configured.				
	In the "Star-delta" control function, the change-over pause extends the time between switching off the star contactor and switching on the delta contactor by the time configured. Default setting: 0.00 s				
Max. star time	With the "Star-delta starter" and the "Star-delta reversing starter" control functions:				
	Time-dependent switching from star to delta.				
	Max. star time: 0 - 255 s.				
	Default setting: 20 s.				
Current measuring module built	With control function "Star-delta starter" or "Star-delta reversing starter":				
into the delta circuit or the supply cable	The current setting and the switching levels for star-to-delta switching depend on the installation location of the current measuring module:				
	- in delta circuit (default): current setting I_s is reduced to $I_{\text{rated}} \ x \ 1/\sqrt{3}$				
	In supply cable: current setting				

4.2 Motor control

ET. Execution time

FT: Feedback time

Figure 4-13 Execution time (ET) and feedback time (FT) in relation to FB ON

1)

Note

Behavior with a current less than 12 % of I_s

At a current less than 12% of the motor's rated current I_e , the "Current I_max (% of I_e)' and "Current I_Lx (% of I_e)" is indicated as 0 %. Equally, the binary "Status - Motor current flowing" signal remains set to logical zero.

Faults

The contactor controls are deactivated.

The following signals are also output:

- A flashing signal on the QLS lamp control
- A flashing signal on the "GEN. FAULT" LED
- The "Status General fault" signal
- The corresponding signaling bit of the fault.

4.2.2.3 "Overload relay" control function

Description

With this control function, SIMOCODE pro functions like a solid-state overload relay. Control commands (e.g. ON, OFF) cannot be issued to the load. Control stations and inputs of the control function (e.g. ON >, OFF), do not have any function in the case of overload relays. When the control voltage is applied, SIMOCODE pro automatically closes the QE3 contactor control; it remains active until it is deactivated by the fault message of a protection or monitoring system.

The QE3 contactor control must be connected to any relay output that switches off the contactor coil of the motor contactor in case of overload.

4.2 Motor control

Settings

You will find detailed explanations of the settings in Chapter Application selection, settings and definitions of control functions (Page 70).

Table 4- 10 Overload relay settings

Overload relay	Description			
FB ON	"Feedback ON" auxiliary control input			
	Connection with any socket, usually with "Status - current flowing" socket			
Load type	You can choose between:			
	Motor (default)			
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 			
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 			
	 Activated: A safety-related disconnection by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 			

Note

In the case of overload, the QE3 output is set (=1) and is only reset after an overload trip (=0).

This output closes when the overload function is parameterized.

Note

Monitoring the number of starts is not possible for this control function.

4.2.2.4 "Direct starter" control function

Description

SIMOCODE pro can switch a motor on and off with this control function.

Control commands

- Start with "ON >" activates the QE1 internal contactor control.
- Stop with "OFF" deactivates the QE1 internal contactor control.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the QE1 contactor control to be deactivated.

Figure 4-15 Schematic of the "Direct starter" control function, "Protection / Control" function block

4.2 Motor control

Settings

Table 4- 11	Direct starter settings
-------------	-------------------------

Direct starter (direct-on-line starter)	Description		
OFF	Control command OFF		
	Connection with any socket, usually with "Enabled control command OFF" socket		
ON >	Control command ON		
	Connection with any socket, usually with "Enabled control command - ON >" socket		
FB ON	"Feedback ON" auxiliary control input		
	Connection with any socket, usually with "Status - current flowing" socket		
Non-maintained command	Deactivated (default setting)		
mode	Activated		
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 		
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 		
Load type	You can choose between:		
	Motor (default)		
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 		
Feedback time	Range 0 to 25.5 s (default: 0.5 s)		
Execution time	Range 0 to 6553.5 s (default: 1.0 s)		

4.2.2.5 "Reversing starter" control function

Description

With this control function, SIMOCODE pro can control the direction of rotation of the motor (forwards and backwards).

Control commands

- Start with "ON >" activates the QE1 contactor control (clockwise, i.e. forwards)
- Start with "ON <" activates the QE2 contactor control (counterclockwise, i.e. reverse)
- Stop with "OFF" deactivates internal contactor controls QE1 and QE2.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes contactor controls QE1 and QE2 to be deactivated.

Switching the direction of rotation

The direction of rotation can be switched once the "Status - ON >" or "Status - ON <" signal has expired (motor is switched off) **and** the interlocking time has elapsed:

- Via the "OFF" control command
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents both contactors from switching on at the same time. Changing from one direction of rotation to the other can be delayed via the interlocking time.

4.2 Motor control

Settings

Table 4- 12	Reversing starter settings
-------------	----------------------------

Reversing starter	Description			
ON <	Control command ON <, counter-clockwise			
	Connection with any socket, usually with "Enabled control command - ON <" socket			
OFF	Control command OFF			
	Connection with any socket, usually with "Enabled control command OFF" socket			
ON >	Control command ON >, clockwise			
	Connection with any socket, usually with "Enabled control command - ON >" socket			
FB ON	"Feedback ON" auxiliary control input			
	Connection with any socket, usually with "Status - current flowing" socket			
Non-maintained command	Deactivated (default setting)			
mode	Activated			
Saving change-over command	Deactivated (default setting)			
	Activated			
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 			
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 			
Load type	You can choose between:			
	Motor (default)			
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 			
Feedback time	Range 0 to 25.5 s (default: 0.5 s)			
Execution time	Range 0 to 6553.5 s (default: 1.0 s)			
Interlocking time	Range 0 to 255 s (default: 0 s)			

4.2.2.6 "Molded case circuit breaker (MCCB)" control function

Description

SIMOCODE pro can mainly switch circuit breakers (e.g. 3WL, 3VL) ON and OFF with this control function. The circuit breakers are then connected to the bus via SIMOCODE pro.

Control commands

- Start with "ON >" activates the QE1 contactor control for a pulse of 400 ms.
- Stop with "OFF" activates contactor control QE3 for a pulse of 400 ms.
- With "Reset", the QE3 contactor control is activated for a pulse of 400 ms when the circuit breaker is tripped (alarm switch = ON).

The pulse of a control command is always fully executed before the "counter pulse" is set.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Making internal assignments

You have to make the following assignments:

- 1. Assign the QE1 contactor control to the relay output that is connected to the "ON connection" of the motorized operating mechanism of the circuit breaker.
- Assign the QE3 contactor control to the relay output that is connected to the "OFF connection" of the motorized operating mechanism of the circuit breaker.
- 3. Assign the SIMOCODE pro input that is connected to the auxiliary switch (AUXS) of the circuit breaker to the auxiliary control input "Feedback ON".
- 4. Assign the SIMOCODE pro input which is connected to the alarm switch (AS) of the circuit breaker to the input (socket) of the "External fault 1" standard function.

Figure 4-17 Schematic of the "Circuit breaker" control function, "Protection / Control" function block

Settings

Table 4-13 Circuit breaker settings

Circuit breaker	Description			
OFF	Control command OFF			
	(Connection with any socket, usually with "Enabled control command OFF" socket)			
ON >	Control command ON			
	(Connection with any socket, usually with "Enabled control command ON >" socket)			
FB ON	Auxiliary control input "Feedback ON" (connection always with socket, (input), that the auxiliary switch of the circuit breaker is connected to).			
Non-maintained command	Deactivated (default setting)			
mode	Activated			
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 			
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 			
Load type	You can choose between:			
	Motor (default)			
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 			
Feedback time	A repeated ON pulse is only output by the QE1 contactor control once the set feedback time has elapsed. The feedback time should therefore be set higher than the motor off time of the motorized operating mechanism of the circuit breaker.			
Execution time	Range 0 to 6553.5 s (default: 1.0 s)			

4.2.2.7 "Star-delta starter" control function

Description

Star-delta starting is used to limit the starting current and to avoid overloading the line supply. In this control function, SIMOCODE pro initially starts the motor with a star-connected stator winding and then switches it to delta.

Control commands

- Start with "ON" first activates the QE1 contactor control (star contactor) and then immediately activates the QE3 contactor control (line contactor)
- Stop with "OFF" deactivates contactor controls QE1, QE2, and QE3.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets. Every fault message causes the QE1, QE2 and QE3 contactor controls to be deactivated.

Switching from star to delta

For this purpose, SIMOCODE pro first deactivates QE1 contactor control again, before connecting QE2 contactor control (delta contactor). SIMOCODE pro switches over from star to delta:

- Current-dependent, for decreasing current below the following thresholds:
 - Transformer installed in delta circuit: I < 150 % Is
 - Transformer installed in supply cable: I < 90 % Is
- Time-dependent to the time set in the parameter "Max. star time" when the current in star operation does not sink below this threshold.

Safety guidelines

Note

It is recommended that contactor controls QE* are wired to the relay outputs of the basic unit.

Note

if the SIMOCODE pro S basic unit is used, an additional multifunction module is required for this control function.

The typical change-over time from star to delta is between 100 ms and 150 ms.

Note

Spurious tripping can occur if you use the internal ground-fault detection for star-delta connections. During delta operation, the summation current is non-zero due to harmonics.

Note

If the current measuring module is switched to delta (normal case), a current which is $1/\sqrt{3}$ times smaller must be set for the star-delta starter control function.

Example: In = 100 A

 $I_s = I_n \ge 1/\sqrt{3}$

 $I_s = 100 \text{ A x } 1/\sqrt{3} = 57.7 \text{ A}$

Current to be set $I_s = 57.7 \text{ A}$

Change-over pause

The switching time from star to delta can be extended by the change-over pause. Reason: For motors with a high ratio between starting current and rated current, the line voltage plus motor EMF might result in a very high delta starting current if the change-over pause is too short. The motor EMF decreases if the pause is longer.

Figure 4-18 Schematic of the "Direct starter" control function, "Protection/Control" function block

Settings

You will find detailed explanations of the settings in Chapter Application selection, settings and definitions of control functions (Page 70).

Table 4- 14 Star-delta starter settings

Star-delta starter	Description				
OFF	Control command OFF				
	(Connection with any socket, usually with "Enabled control command OFF" socket)				
ON >	Control command ON				
	(Connection with any socket, usually with "Enabled control command ON >" socket)				
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)				
Non-maintained command mode	Deactivated (default setting)				
	Activated				
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 				
	• Activated: A safety-related disconnection by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.				
Load type	You can select from the following:				
	Motor (default)				
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 				
Feedback time	Range 0 to 25.5 s (default: 0.5 s)				
Execution time	Range 0 to 6553.5 s (default: 1 s)				
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0.00 s)				
Max. star time	Time-dependent switching from star to delta.				
	Range 0 to 255 s (default: 20 s)				
Current measuring module installed ¹⁾	The current setting and the switching levels for star-to-delta switching depend on the installation location of the current measuring module:				
	• In delta circuit: Current setting Is is reduced to In x $1/\sqrt{3}$ (default)				
	 In supply cable: Current setting Is = In (rated current of the motor) 				

Note

1) If a current / voltage measuring module is in use, the transformer must be connected in the supply cable!

It is also necessary to select "Line-to-line voltage" under "Device configuration \rightarrow Voltage display".

4.2.2.8 "Star delta reversing starter" control function

Description

With this control function, a motor can be started in both directions of rotation in star-delta operation.

Control commands

- CW rotation: Start with "ON >" first activates the QE1 contactor control (star contactor) and then immediately activates the QE3 contactor control (line contactor, clockwise rotation)
- **Counter-clockwise rotation**: Start with "ON <" first activates the QE1 contactor control (star contactor) and then immediately activates the QE4 contactor control (line contactor, counter-clockwise rotation)
- Stop with "OFF" deactivates contactor controls QE1, QE2, QE3, and QE4.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the QE1, QE2, QE3 and QE4 contactor controls to be deactivated.

Switching from star to delta

For this purpose, SIMOCODE pro first deactivates contactor control QE1 before connecting contactor control QE2 (delta contactor).

SIMOCODE pro switches over from star to delta:

- Current-dependent, for decreasing current below the following thresholds:
 - Transformer installed in delta circuit: I < 150 % Is
 - Transformer installed in supply cable: I < 90 % Is
- Time-dependent to the time set in the parameter "Max. star time" when the current in star operation does not sink below this threshold.

Switching the direction of rotation

The direction of rotation can be switched once the "Status - ON >" or "Status - ON <" signal has expired (motor is switched off) **and** the interlocking time has elapsed:

- Via the OFF control command.
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents both contactors from switching on at the same time. Switching from one direction of rotation to the other can be delayed via the "interlocking time."

Startup is always performed in star mode

Safety guidelines

Note

It is recommended that the QE1 and QE2 contactor controls are wired to the relay outputs of the basic unit. You need at least 1 digital module for this control function.

Note

Spurious tripping can occur if you use the internal ground-fault detection for star-delta connections. During delta operation, the summation current is non-zero due to harmonics.

Note

If the current measuring module is switched to delta (normal case), a current which is $1/\sqrt{3}$ times smaller must be set for the star-delta starter control function.

Example: $I_n = 100 \text{ A}$ $I_s = I_n \ge 1/\sqrt{3}$ $I_s = 100 \text{ A} \ge 1/\sqrt{3} = 57.7 \text{ A}$ Current to be set $I_s = 57.7 \text{ A}$

Change-over pause

The switching time from star to delta can be extended by the change-over pause. Reason: For motors with a high ratio between starting current and rated current, the line voltage plus motor EMF might result in a very high delta starting current if the change-over pause is too short. The motor EMF decreases if the pause is longer.

Schematic

Figure 4-19 Schematic of the "Star-delta reversing starter" control function, "Protection / Control" function block

Settings

You will find detailed explanations of the settings in Chapter Application selection, settings and definitions of control functions (Page 70).

Table 4- 15 Star-delta reversing starter settings

Star-delta reversing starter	Description			
Voltage display (in the device configuration)	Select "Line-to-line voltage"			
Motor control \rightarrow Control function	<u> </u>			
OFF	Control command OEE			
	Connection with any socket, usually with "Enabled control command OEE" socket			
ON >	Control command ON >			
	Connection with any socket, usually with "Enabled control command ON >" socket			
ON <	Control command ON <			
	Connection with any socket, usually with "Enabled control command ON <" socket			
FB ON	"Feedback ON" auxiliary control input			
	Connection with any socket, usually with "Status - current flowing" socket			
Non-maintained command	Deactivated (default setting)			
mode	Activated			
Saving change-over command	Deactivated (default setting)			
	Activated			
Separate fail-safe function from control function	 Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro. 			
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 			
Load type	You can choose between:			
	Motor (default)			
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70)) 			
Feedback time	Range 0 to 25.5 s (default: 0.5 s)			
Execution time	Range 0 to 6553.5 s (default: 1 s)			
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0 s)			
Interlocking time	Range 0 to 255 s (default: 0 s)			
Max. star time	Time-dependent switching from star to delta.			
	Range 0 to 255 s (default: 20 s)			
Current measuring module installed ¹⁾	The current setting and the switching levels for star-to-delta switching depend on the installation location of the current transformer / current measuring module:			
	• in delta circuit (default): Current setting I_s is reduced to $I_n \ge 1/\sqrt{3}$			
	 In supply cable: Current setting Is = In (rated current of the motor) 			

Note

1) If a current / voltage measuring module is in use, the transformer must be connected in the supply cable!

4.2.2.9 Control function "Dahlander starter"

Description

With this function, SIMOCODE pro can control motors with only one stator winding at two speeds (FAST and SLOW). SIMOCODE pro connects the stator winding via the contactors so that there is a high pole number at low speed and a low pole number at high speed.

Control commands

- SLOW: Start with "ON >" first activates the QE2 contactor control (SLOW).
- **FAST**: Start with "ON >>" first activates the QE3 contactor control (star contactor, FAST) and then immediately activates the QE1 contactor control (line contactor, FAST).
- Stop with "OFF" deactivates contactor controls QE1, QE2, and QE3.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the QE1, QE2 and QE3 contactor controls to be deactivated.

Switching the speed

The speed can be switched once the "Feedback ON" signal has expired (motor is switched off) **and** on change-over from "FAST" \rightarrow "SLOW" after the change-over pause has elapsed:

- Via the "OFF" control command
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents the contactors for the "FAST" speed from being switched on at the same time as the contactor for the "SLOW" speed.

Change-over pause

The "Change-over pause" parameter can be used to delay switching from "FAST" \rightarrow "SLOW" to give the motor enough time to run down.

Note

Two current settings must be set for this control function:

- I_s1 for the SLOW speed
- I_s2 for the FAST speed.

Depending on the current range, the current can in many cases be directly measured at both speeds with a single current transformer. Otherwise you will need two external current transformers appropriate for the relevant speed (e.g. 3UF18 with a 1 A secondary transformer rated current), whose secondary cables must lead through the current measuring module within the range 0.3 to 3 A. The current setting Is1 or Is2 must be converted according to the secondary currents of the external transformers. For more information, see Chapter Overload protection (Page 36).

Figure 4-20 Schematic of the "Dahlander starter" control function, "Protection/Control" function block

4.2 Motor control

Settings

Table 4- 16	Settings for Dahlander starters
-------------	---------------------------------

Dahlander starter	Description		
OFF	Control command OFF		
	Connection with any socket, usually with "Enabled control command OFF" socket		
ON >	Control command ON > (SLOW)		
	Connection with any socket, usually with "Enabled control command ON >" socket		
ON >>	Control command ON >> (FAST)		
	Connection with any socket, usually with "Enabled control command ON >>" socket		
FB ON	"Feedback ON" auxiliary control input		
	Connection with any socket, usually with "Status - current flowing" socket		
Non-maintained command	Deactivated (default setting)		
mode	Activated		
Separate fail-safe function	Deactivated (default setting):		
from control function	• A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.		
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro. 		
Saving change-over command	Deactivated (default setting)Activated		
Load type	You can choose between:		
	Motor (default)		
	• Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))		
Feedback time	Range 0 to 25.5 s (default: 0.5 s)		
Execution time	Range 0 to 6553.5 s (default: 1.0 s)		
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0.00 s)		

4.2.2.10 Control function "Dahlander reversing starter"

Description

This control function can be used to change the direction of rotation of a motor at both speeds.

Control commands

- **RIGHT-SLOW:** Start with "ON >" activates contactor control QE2 (CW-SLOW)
- RIGHT-FAST: Start with "ON >>" first activates contactor control QE3 (star contactor FAST) and then immediately activates contactor control QE1 (CW-FAST)
- LEFT-SLOW: Start with "ON <" activates contactor control QE4 (CCW-SLOW)
- LEFT-FAST: Start with "ON <<" first activates contactor control QE3 (star contactor FAST) and then immediately activates contactor control QE5 (CCW-FAST)
- Stop with "OFF" deactivates the contactor controls.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets. It does not matter in what order the control commands are given. Every fault message causes the contactor control to be deactivated.

Switching the direction of rotation

The direction of rotation can be switched once the "Status - ON >" or "Status - ON <" signal has expired (motor is switched off) **and** the interlocking time has elapsed:

- Via the OFF control command
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents both contactors from switching on at the same time. Switching from one direction of rotation to the other can be delayed via the "interlocking time."

Switching the speed

The speed can be switched once the "Feedback ON" signal has expired (motor is switched off) and on change-over from "FAST" \rightarrow "SLOW" after the change-over pause has elapsed:

- Via the OFF control command
- Directly when "Saving change-over command" is activated.

Change-over pause

The "Change-over pause" parameter can be used to delay switching from "FAST"→"SLOW" to give the motor enough time to run down.

Safety guidelines

Note

You need at least one digital module for this control function. This control function cannot be implemented with bistable relay outputs.

Note

Two current settings must be set for this control function:

- Is1 for the SLOW speed
- I_s2 for the FAST speed.

Depending on the current range, the current can in many cases be directly measured at both speeds with a single current transformer. Otherwise you will need two external current transformers appropriate for the relevant speed (e.g. 3UF18 with a 1 A secondary transformer rated current), whose secondary cables must lead through the current measuring module within the range 0.3 to 3 A. The current setting Is1 or Is2 must be converted according to the secondary currents of the external transformers. For more information, see Chapter Overload protection (Page 36).

Figure 4-21 Schematic of the "Dahlander starter" control function, "Protection/Control" function block

4.2 Motor control

Settings

Table 4- 17	Control function	settings for	Dahlander	reversing	starter
-------------	------------------	--------------	-----------	-----------	---------

Dahlander reversing starter	Description
OFF	Control command OFF (Connection with any socket, usually with "Enabled control command OFF" socket)
ON	Control command ON > (CW, SLOW) (connection with any socket, usually with "Enabled control command ON >" socket)
ON >>	Control command ON >> (CW, FAST) (connection with any socket, usually with "Enabled control command ON >>" socket)
ON <	Control command ON < (CCW, SLOW) (connection with any socket, usually with "Enabled control command - ON <" socket)
ON <<	Control command ON << (CCW, FAST) (connection with any socket, usually with "Enabled control command ON <<" socket)
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)
Non-maintained command mode	Deactivated (default setting)Activated
Saving change-over command	Deactivated (default setting)Activated
Separate fail-safe function from control function	Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.
	• Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.
Load type	You can choose between:
	Motor (default)
	Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))
Feedback time	Range 0 to 25.5 s (default: 0.5 s)
Execution time	Range 0 to 6553.5 s (default: 1.0 s)
Interlocking time	Range 0 to 255 s (default: 0 s)
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0.00 s)

4.2.2.11 "Pole-changing starter" control function

Description

With this control function, SIMOCODE pro can control motors with two stator windings at two speeds (FAST and SLOW).

Control commands

- SLOW: Start with "ON >" first activates the QE2 contactor control (SLOW).
- FAST: Start with "ON >>" activates QE1 contactor control (FAST)
- Stop with "OFF" deactivates the contactor controls.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

It does not matter in what order the control commands are given.

Every fault message causes the contactor control to be deactivated.

Switching the speed

The speed can be switched once the "Feedback ON" signal has expired (motor is switched off) **and** on change-over from "FAST"→"SLOW" after the change-over pause has elapsed:

- Via the OFF control command.
- Directly when "Saving change-over command" is activated.

Change-over pause

The "Change-over pause" parameter can be used to delay switching from "FAST"→"SLOW" to give the motor enough time to run down.

Note

Two current settings must be set for this control function:

- I_s1 for the SLOW speed
- I_s2 for the FAST speed.

Depending on the current range, the current can in many cases be directly measured at both speeds with a single current transformer. Otherwise you will need two external current transformers appropriate for the relevant speed (e.g. 3UF18 with a 1 A secondary transformer rated current), whose secondary cables must lead through the current measuring module within the range 0.3 to 3 A. The current setting I_s1 or I_s2 must be converted according to the secondary currents of the external transformers. For more information, see Chapter Overload protection (Page 36).

Schematic

Figure 4-22 Schematic of the "Pole-changing starter" control function, "Protection / Control" function block

Settings

Table 4- 18Pole-changing starter settings

Pole-changing starter	Description
OFF	Control command OFF (connection with any socket, usually with "Enabled control command - OFF" socket)
ON >	Control command ON > (SLOW) (connection with any socket, usually with "Enabled control command - ON >" socket)
ON >>	Control command ON >> (FAST) (connection with any socket, usually with "Enabled control command - ON >>" socket)
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)
Non-maintained command mode	Deactivated (default setting)Activated
Saving change-over command	Deactivated (default setting)Activated
Separate fail-safe function from control function	• Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.
Load type	You can choose between:
	Motor (default)
	 Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))
Feedback time	Range 0 to 25.5 s (default: 0.5 s)
Execution time	Range 0 to 6553.5 s (default: 1.0 s)
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0.00 s)

4.2.2.12 "Pole-changing reversing starter" control function

Description

This control function can be used to change the direction of rotation of a motor at both speeds.

Control commands

- **RIGHT-SLOW:** Start with "ON >" first activates the QE2 contactor control (RIGHT-SLOW)
- RIGHT-FAST: Start with "ON >>" activates contactor control QE1 (CW-FAST)
- LEFT-SLOW: Start with "ON <" activates contactor control QE4 (CCW-SLOW)
- LEFT-FAST: Start with "ON <<" activates contactor control QE5 (CCW-FAST)
- Stop with OFF deactivates the contactor controls.

The control commands can be issued to SIMOCODE pro from any control stations. Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

It does not matter in what order the control commands are given. Every fault message causes the contactor control to be deactivated.

Switching the direction of rotation

The direction of rotation can be switched once the "Status - ON >" or "Status - ON <" signal has expired (motor is switched off) **and** the interlocking time has elapsed:

- Via the "OFF" control command
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents both contactors from switching on at the same time. Switching from one direction of rotation to the other can be delayed via the "interlocking time."

Switching the speed

The speed can be switched once the "Feedback ON" signal has expired (motor is switched off) **and** on change-over from "FAST"→"SLOW" after the change-over pause has elapsed:

- Via the "OFF" control command
- Directly when "Saving change-over command" is activated.

Change-over pause

SIMOCODE pro prevents the contactors for "FAST" and "SLOW" from being switched on simultaneously. The "Change-over pause" can be used to delay switching from "FAST"→"SLOW" to give the motor enough time to run down.

Safety guidelines

Note

At least one additional digital module is required for this control function.

Note

Two current settings must be set for the pole-changing starter:

- Is1 for the SLOW speed
- Is2 for the FAST speed.

Depending on the current range, the current can in many cases be directly measured at both speeds with a single current transformer. Otherwise you will need two external current transformers appropriate for the relevant speed (e.g. 3UF18 with a 1 A secondary transformer rated current), whose secondary cables must lead through the current measuring module within the range 0.3 to 3 A. The current setting Is1 or Is2 must be converted according to the secondary currents of the external transformers. For more information, see Chapter Overload protection (Page 36).

Schematic

Parameterizing SIMOCODE pro Operating Manual, 05/2018, A5E40507630002A/RS-AB/002

4.2 Motor control

Settings

Table 4-19 Pole-changing reversing starter settings

Pole-changing reversing starter	Description
OFF	Control command OFF (connection with any socket, usually with "Enabled control command - OFF" socket)
ON >	Control command ON > (CW, SLOW) (connection with any socket, usually with "Enabled control command ON >" socket)
ON >>	Control command ON >> (CW, FAST) (connection with any socket, usually with "Enabled control command ON >>" socket)
ON <	Control command ON < (CCW, SLOW) (connection with any socket, usually with "Enabled control command - ON <" socket)
ON <<	Control command ON << (CCW, FAST) (connection with any socket, usually with "Enabled control command ON <<" socket)
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)
Non-maintained command mode	Deactivated (default setting)
	Activated
Saving change-over command	Deactivated (default setting)
	Activated
Separate fail-safe function from control function	• Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.
	• Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.
Load type	You can choose between:
	Motor (default)
	Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))
Feedback time	Range 0 to 25.5 s (default: 0.5 s)
Execution time	Range 0 to 6553.5 s (default: 1.0 s)
Interlocking time	Range 0 - 55 s (default: 0 s)
Change-over pause	Range 0 to 655.3 s (10 ms steps) (default: 0.00 s)

4.2.2.13 "Solenoid valve" control function

Description

SIMOCODE pro can use this function to control a solenoid valve. The solenoid valve is brought into the corresponding end position using the control commands "OPEN" and "CLOSE". SIMOCODE pro must be informed via corresponding limit switches (FC, FO) when the end position has been reached.

Control commands

- OPEN: Start with "ON >" activates the QE1 internal contactor control.
- CLOSE: Start with "OFF" deactivates the QE1 internal contactor control.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the QE1 contactor control to be deactivated and puts the solenoid valve into the "CLOSED" position.

Safety guidelines

Note

The motor protection functions are not active. A current measuring module is not necessary.

Note

If both limit switches respond at the same time (FO = 1 and FC = 1), the solenoid value is immediately switched off via the fault message "Fault - Double 1" (= "CLOSED").

If the end position feedback does not correspond to the control command, the valve is switched off with the fault message "Fault - end position fault" (="CLOSED").

Note

Fault - Execution OFF command is issued if the "OPEN" end position is not reached in the parameterized time.

Fault - Execution ON command is issued if the "CLOSED" end position is not reached in the parameterized time.

4.2 Motor control

Schematic

Settings

Solenoid valve	Description
OFF	Control command OFF (CLOSED) (connection with any socket, usually with "Enabled control command OFF" socket)
ON >	Control command ON (OPEN) (connection with any socket, usually with socket "Enabled control command - ON >")
Non-maintained command mode	Deactivated (default setting)Activated
Separate fail-safe function from control function	• Deactivated (default setting): A safety-related tripping by the DM-F modules is also effected by the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.
	 Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.
Execution time	Time until the end position is reached. Range 0 to 6553.5 s (default: 1.0 s)

4.2.2.14 "Positioner" control function

Description

SIMOCODE pro can control positioners / actuators with this function. The positioner is moved into the corresponding end position with the "OPEN" and "CLOSED" control commands and is deactivated via its limit switches (1-active) or torque switches (0-active). The response of the limit / torque switches must be passed to SIMOCODE pro via its inputs.

Control commands

- OPEN: Start with "ON >" activates contactor control QE1 until "End position OPEN" is reached (Feedback OPEN)
- CLOSE: Start with "ON <" activates contactor control QE2 until "End position CLOSED" is reached (Feedback CLOSED)
- **Stop** with "OFF" deactivates the contactor controls. The drive remains in the present position.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Function schematic

Figure 4-25 Function schematic of the torque and limit switches when controlling positioners

Switching the direction of travel

The direction of travel can be switched once the "Feedback ON" signal has expired (motor is switched off) **and** the interlocking time has elapsed:

• Via the "OFF" control command.

SIMOCODE pro prevents both contactors from switching on at the same time. Switching from one direction of travel to the other can be delayed via the "interlocking time".

Note

The corresponding torque switch must not respond before the associated limit switch when the torque switch TO (OPEN) and/or TC (CLOSED) is connected! In this case, the positioner is switched off immediately with the fault message "Fault - stalled positioner." If both limit switches respond simultaneously (FO=1 and FC=1), the positioner is switched off immediately with the fault message 'Fault - double 1'. If both torque switches respond at the same time (FO=0 and FC=0), the positioner is immediately switched off with the fault message "Fault - double 0." If the end position feedback does not correspond to the control command, the positioner is switched off with the fault."

Note

Fault - Execution OFF command is issued if the "OPEN" end position is not reached in the parameterized time.

Fault - Execution ON command is issued if the "CLOSED" end position is not reached in the parameterized time.
Schematic

Figure 4-26 Schematic of the "Positioner" control function, "Protection / Control" function block

4.2 Motor control

Types of positioner control

The following table shows the five types of positioner control:

Table 4- 21	Types of	positioner	control
	1,900,01	poolitionor	001101

Туре	тс	FC	FO	то
Tripping	Torque closed	Limit closed	Limit open	Torque open
Positioner 1	_	Х	Х	_
After reaching the end position FO (OPEN) or FC (CLOSED).				
Positioner 2	Х	х	х	Х
After reaching the end position FO (OPEN) or FC (CLOSED) and response of the associated torque switch TO (OPEN) or TC (CLOSED)				
Positioner 3	Х	Х	Х	_
After reaching the end position FO (OPEN). After reaching end position (CLOSED), the respective torque switch TC must also respond after the limit switch FC has responded.				
Positioner 4	—	Х	Х	Х
After reaching the end position FC (CLOSED). After reaching end position FO (OPEN), the respective torque switch FO must also respond after the limit switch TO has responded.				
Positioner 5	Antivalent a	ctive	Antiva	lent active
After reaching the end position or the torque. The valve actuator is monitored either just with the limit switches or just with the torque switches. The switches are implemented as change-over contacts and are checked for antivalence. In the case of non-antivalent feedback (e.g. FC=0 and TC=0), SIMOCODE pro detects an open circuit and deactivates the positioner with the fault message "Fault - Antivalence"				

Note

The signals of the torque switches and the limit switches must be wired to the inputs of the basic unit. Torque switches must be 0-active, whereas the limit switches must be 1-active.

Settings

You will find detailed explanations of the settings in Chapter Application selection, settings and definitions of control functions (Page 70).

Table 4- 22Positioner control function settings

Positioner	Description		
ON <	Control command ON < (CLOSED) (connection with any socket, usually with "Enabled control command - ON <" socket)		
OFF	Control command STOP (connection with any socket, usually with "Enabled control command - OFF" socket)		
ON >	Control command ON (OPEN) (connection with any socket, usually with "Enabled control command - ON >" socket)		
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)		
FC	Auxiliary control input "Feedback CLOSED" (connection with any socket, usually with the socket of an input to which the limit switch is wired.)		
FO	Auxiliary control input "Feedback OPEN" (connection with any socket, usually with the socket of an input to which the limit switch is wired.)		
тс	Auxiliary control input "Torque CLOSED" (connection with any socket, usually with the socket of an input to which the torque switch is wired.)		
ТО	Auxiliary control input "Torque OPEN" (connection with any socket, usually with the socket of an input to which the torque switch is wired.)		
Non-maintained command mode	Deactivated (default setting)Activated		
Separate fail-safe function from control function	• Deactivated (default setting): A safety-related tripping by the DM-F modules is also effected by the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.		
	• Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.		
Load type	You can choose between:		
	Motor (default)		
	Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))		
Feedback time	Range 0 to 25.5 s (default: 0.5 s)		
Execution time	Time until the end position is reached. Range 0 to 6553.5 s (default: 1.0 s)		
Interlocking time	Range 0 to 255 s (default: 0 s)		

4.2 Motor control

4.2.2.15 "Soft starter" control function

Description

With this control function, SIMOCODE pro can activate the 3RW soft starter. Thus, the 3RW soft starters are connected via SIMOCODE pro to the bus.

Control commands

- Start with "ON >" activates contactor controls QE1 and QE4.
- Stop with "OFF" first deactivates contactor control QE4. When the signal "Feedback ON" has expired, the QE1 contactor control is deactivated 3 s later in order to facilitate a smooth run down via the soft starter.
- With "Reset", the QE3 contactor control is activated for 20 ms and sends the soft starter an acknowledgement signal via a parameterizable relay output.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the contactor control to be deactivated.

Making internal assignments

You have to make the following assignments:

- 1. Assign the QE1 contactor control to the relay output which controls the coil of the line contactor.
- 2. Assign contactor control QE4 to any relay output from which the "ON input" of the soft starter is to be controlled.
- 3. Assign the QE3 contactor control to the relay output that supplies the 20 ms acknowledgment signal to the soft starter.
- 4. Assign the "ON >" and "OFF" control commands to the enabled control commands.
- 5. Assign the SIMOCODE pro input to which the "Fault" signal output of the soft starter is connected to the input (socket) of the standard function "External fault 1."
- 6. The "startup end" signal of the soft starter can also be wired to one of the inputs and processed by SIMOCODE pro.

Note

In order to avoid disconnections due to faults, the "Execution time" parameter in SIMOCODE pro must be set at least to the soft run-down time of the soft starter.

Note

If the SIMOCODE pro S basic unit is used, an additional multifunction module is required for this control function.

Schematic

Settings

You will find detailed explanations of the settings in Application selection, settings and definitions of control functions (Page 70).

Soft starter	Description		
OFF	Control command OFF (connection with any socket, usually with "Enabled control command OFF" socket)		
ON >	Control command ON (connection with any socket, usually with "Enabled control command ON >" socket)		
FB ON	Auxiliary control input "Feedback ON" (connection with any socket —, usually with socket "Status - current flowing")		
Non-maintained command mode	Deactivated (default setting)Activated		
Separate fail-safe function from control function	• Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.		
	• Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.		
Load type	You can choose between:		
	Motor (default)		
	Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))		
Feedback time	Range 0 to 25.5 s (default: 0.5 s)		
Execution time	At least ≥ soft run-down time		
	Range 0 to 6553.5 s (default: 1.0 s)		

Table 4- 23 Soft starter settings

4.2 Motor control

4.2.2.16 "Soft starter with reversing contactor" control function

Description

With this control function, SIMOCODE pro can activate the 3RW soft starter including an additional reversing contactor. Thus, the 3RW soft starters are connected via SIMOCODE pro to the bus. SIMOCODE pro can also control the direction of rotation of the motor (forwards and backwards).

Control commands

- Start with "ON >" activates contactor controls QE1 and QE4 (clockwise, i.e. forwards)
- Start with "ON <" activates contactor controls QE2 and QE4 (counterclockwise, i.e. reverse).
- Stop with "OFF" first deactivates contactor control QE4. When the "Feedback ON" signal is no longer issued, contactor control QE1 / QE2 is deactivated 3 s later to leave enough time for a soft run-down via the soft starter.
- With "Reset", the QE3 contactor control is activated for 20 ms and sends the soft starter an acknowledgement signal via a parameterizable relay output.

The control commands can be issued to SIMOCODE pro from any control stations (see also Description of functions of control stations (Page 56)). Thus, the inputs (plugs) must be connected to the corresponding sockets, preferably to the "Enabled control command" sockets.

Every fault message causes the contactor controls to be deactivated.

Switching the direction of rotation

The direction of rotation can be switched once the "Status - ON >" or "Status - ON <" signal has expired (motor is switched off) AND the interlocking time has elapsed:

- Via the "OFF" control command
- Directly when "Saving change-over command" is activated.

SIMOCODE pro prevents both contactors from switching on at the same time. Switching from one direction of rotation to the other can be delayed via the interlocking time.

Making internal assignments

You have to make the following assignments:

- Assign the QE1 contactor control to the relay output which controls the coil of the line contactor (right).
- 2. Assign the QE2 contactor control to the relay output which controls the coil of the line contactor (left).
- 3. Assign the QE4 contactor control to any relay output from which the "ON input" of the soft starter should be controlled.
- 4. Assign the QE3 contactor control to the relay output that supplies the 20 ms acknowledgment signal to the soft starter.
- 5. Assign the "ON >", "ON <" and "OFF" control commands to the enabled control commands.
- 6. Assign the SIMOCODE pro input to which the "Fault" signal output of the soft starter is connected to the input (socket) of the standard function "External fault 1."
- 7. The "startup end" signal of the soft starter can also be wired to one of the inputs and processed by SIMOCODE pro.

Note

An additional digital module may be necessary for this control function.

Schematic

Figure 4-28 Schematic of the "Soft starter with reversing contactor" control function, "Protection / Control" function block

Parameterizing SIMOCODE pro Operating Manual, 05/2018, A5E40507630002A/RS-AB/002

Parameters

4.2 Motor control

Settings

You will find detailed explanations of the settings in Chapter Application selection, settings and definitions of control functions (Page 70).

Table 4- 24 Soft starter with reversing contactor settings

Soft starter with reversing contactor	Description	
ON >	Control command ON > (clockwise) (connection with any socket, usually with "Enabled control command - ON >" socket)	
OFF	Control command OFF (connection with any socket, usually with "Enabled control command OFF" socket)	
ON <	Control command ON < (counterclockwise) (connection with any socket, usually with "Enabled control command - ON <" socket)	
FB ON	Auxiliary control input "Feedback ON" (connection with any socket, usually with "Status - current flowing" socket)	
Non-maintained command mode	Deactivated (default setting)Activated	
Saving change-over command	Deactivated (default setting)Activated	
Separate fail-safe function from control function	Deactivated (default setting): A safety-related tripping by the DM-F modules also affects the SIMOCODE pro control function, avoiding additional follow-on fault messages. This setting is selected for applications where safety-related tripping directly affects the motor controlled by SIMOCODE pro.	
	• Activated: A safety-related tripping by the DM-F modules does not affect the SIMOCODE pro control function. This setting is selected for applications where safety-related tripping does not affect the motor controlled by SIMOCODE pro.	
Load type	You can choose between:	
	Motor (default)	
	• Resistive load (see Chapter Application selection, settings and definitions of control functions (Page 70))	
Feedback time	Range 0 to 25.5 s (default: 0.5 s)	
Execution time	Execution time ≥ Soft run-down time	
	Range 0 to 6553.5s (default: 1.0 s)	
Interlocking time	Range 0 to 255 s (default: 0 s)	

4.2.3 Active control stations, contactor controls, lamp controls and status information for the control functions

Designation / control function	Control station				
	ON <<	ON <	OFF	ON >	ON >>
Overload ^{1) 2) 3)}	-	-	-	-	-
Direct starter ^{1) 2) 3)}	-	-	OFF	ON	-
Reversing starter ^{1) 2) 3)}	-	CCW	OFF	CW	-
Circuit breaker ^{1) 2) 3)}	-	-	OFF	ON	-
Star-delta starter ^{2) 3)}	-	-	OFF	ON	-
Star-delta reversing starter 2)	-	CCW	OFF	CW	-
Dahlander starter 2)	-	-	OFF	SLOW	FAST
Dahlander reversing starter 2)	CCW-FAST	CCW-SLOW	OFF	CW-SLOW	CW-FAST
Pole-changing starter 2)	-	-	OFF	SLOW	FAST
Pole-changing reversing starter ²⁾	CCW-FAST	CCW-SLOW	OFF	CW-SLOW	CW-FAST
Solenoid valve 2)	-	-	CLOSED	OPEN	-
Positioner 1 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 2 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 3 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 4 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 5 ²⁾	-	CLOSED	Stop	OPEN	-
Soft starter ^{2) 3)}	-	-	OFF	ON	-
Soft starter with reversing contactor ²⁾	-	CCW	OFF	CW	-

Table 4- 25 Active control stations of control functions

4.2 Motor control

Table 4-26 Contactor control with control functions

Designation / control function	Control station				
	QE1	QE2	QE3	QE4	QE5
Overload ^{1) 2) 3)}	-	-	Active	-	-
Direct starter ^{1) 2) 3)}	ON	-	-	-	-
Reversing starter ^{1) 2) 3)}	CW	CCW	-	-	-
Circuit breaker ^{1) 2) 3)}	ON pulse	-	OFF pulse	-	-
Star-delta starter ^{2) 3)}	Star contactor	Delta contactor	Line contactor	-	-
Star-delta reversing starter ²⁾	Star contactor	Delta contactor	RIGHT line contactor	LEFT line contactor	-
Dahlander starter 2)	FAST	SLOW	Star contactor FAST	-	-
Dahlander reversing starter ²⁾	CW-FAST	CW-SLOW	Star contactor FAST	CCW-SLOW	CCW-FAST
Pole-changing starter 2)	FAST	SLOW	-	-	-
Pole-changing reversing starter ²⁾	CW-FAST	CW-SLOW	-	CCW-SLOW	CCW-FAST
Solenoid valve ²⁾	OPEN	-	-	-	-
Positioner 1 ²⁾	OPEN	CLOSED	-	-	-
Positioner 2 ²⁾	OPEN	CLOSED	-	-	-
Positioner 3 ²⁾	OPEN	CLOSED	-	-	-
Positioner 4 ²⁾	OPEN	CLOSED	-	-	-
Positioner 5 ²⁾	OPEN	CLOSED	-	-	-
Soft starter ^{2) 3)}	ON line contactor	-	Reset	ON command	-
Soft starter with reversing contactor ²⁾	RIGHT line contactor	LEFT line contactor	Reset	ON command	-

Parameters 4.2 Motor control

Designation / control function	Lamp control				
	QLE << (ON <<)	QLE < (ON <)	QLA (OFF)	QLE < (ON >)	QLE >> (ON >>)
Overload ^{1) 2) 3)}	-	-	-	-	-
Direct starter ^{1) 2) 3)}	-	-	OFF	ON	-
Reversing starter 1) 2) 3)	-	CCW	OFF	CW	-
Circuit breaker ^{1) 2) 3)}	-	-	OFF	ON	-
Star-delta starter ^{2) 3)}	-	-	OFF	ON	-
Star-delta reversing starter 2)	-	CCW	OFF	CW	-
Dahlander starter ²⁾	-	-	OFF	SLOW	FAST
Dahlander reversing starter ²⁾	CCW-FAST	CCW-SLOW	OFF	CW-SLOW	CW-FAST
Pole-changing starter ²⁾	-	-	OFF	SLOW	FAST
Pole-changing reversing starter ²⁾	CCW-FAST	CCW-SLOW	OFF	CW-SLOW	CW-FAST
Solenoid valve 2)	-	-	CLOSED	OPEN	-
Positioner 1 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 2 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 3 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 4 ²⁾	-	CLOSED	Stop	OPEN	-
Positioner 5 ²⁾	-	CLOSED	Stop	OPEN	-
Soft starter ^{2) 3)}	-	-	OFF	ON	-
Soft starter with reversing contactor ²⁾	-	CCW	OFF	CW	-

Table 4- 27 Lamp control with control functions

1) SIMOCODE pro C basic unit

2) SIMOCODE pro V basic units

3) SIMOCODE pro S basic unit

4.3.1 Ground fault monitoring

4.3.1.1 Ground-fault monitoring

Residual current monitoring relays are used in industry to:

- Protect systems from damage caused by residual currents
- Prevent production losses caused by unplanned downtime
- Perform maintenance to meet all demands.

In particular, ground-fault monitoring is used in conjunction with 3UL23 residual current transformers to monitor systems where environmental conditions increase the chance of fault currents.

Internal ground-fault monitoring

SIMOCODE pro acquires and monitors all three phase currents. By evaluating the summation current of the three current values, the motor feeder can be monitored for a possible residual current or ground fault.

Internal ground-fault monitoring via current measuring modules or current / voltage measuring modules is only possible for motors with a 3-phase connection in power systems that are either grounded solidly or with low impedance.

NOTICE

Star-delta connection

Spurious tripping can occur if you use internal ground-fault monitoring for star-delta circuits. During delta operation, the summation current is non-zero due to harmonics.

External ground-fault monitoring

The external ground-fault monitoring is normally used in the following cases:

- · in cases in which power systems are grounded with high impedance
- in cases, in which precise detection of the ground-fault current is necessary, for example, for condition monitoring.

With ground-fault detection using the residual current transformer 3UL23, it is possible to determine the precise residual current as a measured value to define freely selectable warning and trip levels in a wide range 30 mA to 40 A.

Method of operation:

The main conductors and, if present, the neutral conductor to which the load is connected, are routed through the opening of the residual current transformer 3UL23. Its secondary winding is connected to the ground-fault module.

If an insulation fault occurs, for example, a residual current arises between the incoming and the outgoing currents that the ground-fault module evaluates via the residual current transformer.

For maximum plant availability, the ground-fault module 3UF7 510-1AA00-0 and the residual current transformer 3UL23 were developed with the following design goals:

- High measuring accuracy: The ground-fault module in conjunction with the residual current transformer 3UL23 achieves a measuring accuracy of ±7.5 %. This enables set limit values to be monitored very precisely. Spurious tripping caused by measuring errors is minimized. The combination of ground-fault module and residual current transformer 3UL23 is designed so that a warning or alarm is triggered at the latest upon exceeding the set limit values. To achieve this, slightly higher residual currents than those actually measured are displayed and compared with the set limit values. The measuring accuracy is -15 % to 0 % of the value displayed. This takes into account the measuring accuracy of monitoring relay and residual current transformer.
- Settable prewarning and trip levels: The threshold levels for the residual current are defined over a very wide range of 30 mA to 40 A. The response of SIMOCODE pro on reaching a prewarning level or trip level can be freely parameterized, including a delay.
- Permanent self-monitoring: The permanent self-monitoring of the ground-fault module 3UF7 510-1AA00-0 and the connected transformer ensures reliable monitoring of the function. The connected 3UL23 residual current transformer is also permanently monitored for open-circuit or short-circuit. This means cyclic manual tests to verify the function are obsolete.
- Settable active status and delay times of the residual current protection. Depending on the application, the monitoring function can be active permanently, only when the motor is running, or only after the motor has started. This permits the suppression of residual currents that are only measured during motor starting due to high starting currents. Short-term residual currents or immitted interference can be easily suppressed by means of the adjustable tripping delay time.

Use of the residual current transformers 3UL22 and 3UL23:

• Use the residual current transformer 3UL23 to detect residual currents with the ground-fault module 3UF7 510-1AA00-0. The residual current transformer 3UL23 is suitable for detecting pure AC residual currents and AC residual currents with a pulsating DC component.

Note

Precondition for using a 3UF7 510-1AA00-0 ground-fault module

Use of this ground-fault module requires a SIMOCODE pro V PB basic unit, with at least product version *E10* (from 09/2013) or a SIMOCODE pro V PN basic unit with at least product version E04*.

• Use the 3UL22 residual current transformer to detect residual currents with the 3UF7 500-1AA00-0 ground-fault module.

Note

Only monitoring of the residual current trip level possible

With this combination, it is only possible to monitor a trip level of the residual current. Measured values are then not available for the residual current.

Note

Precondition for using a 3UF7 500-1AA00-0 ground-fault module

Use of this ground-fault module requires a SIMOCODE pro V PB basic unit, at least version *E02* or later (from 04/2005).

No personal or fire protection!

The ground-fault modules 3UF75* monitor that devices and systems are functioning correctly.

They are not suitable for personal protection or protection from fires.

4.3.1.2 Limits of fault current measurement

In the event of increasing primary currents, imbalances in the cable routing and current loads in individual cables increasingly cause what appear to be residual currents that are detected by the evaluation units. Spurious tripping may therefore occur if excessively low monitoring limit values have been set at high primary currents. Because of these tolerances in the configuration, the measuring accuracy no longer corresponds to the stated range of ± 7.5 %. To avoid spurious tripping, we recommend setting the limit values to the minimum values listed in the following graphic, depending on the applicable primary current.

Minimum adjustable parameters trip level earth fault protection for all transformer sizes at 50/60 Hz

Rated current [A]

If monitoring is required within limit values that are lower than those recommended, we recommend the use of delay times, particularly if spurious tripping occurs exclusively during motor startup. If delay times do not lead to the desired result, the use of shield sleeves may considerably lower the minimum possible monitoring limit.

You will find more information in Chapters "2.5.2 Installation specifications" and "2.5.3 Optimization options" in the Manual 3UG4/3RR2 Monitoring Relay (https://support.automation.siemens.com/WW/view/en/50426183/133300).

The monitored current waveforms also have a strong influence on the measuring accuracy. In the case of loads with generalized phase control, deviations from the measuring accuracy can occur when monitoring for high residual current limits. The cause of this is the extreme difference between the monitored rms values and the peak values of the residual current. The more extreme the generalized phase control, the shorter the time during which current flows, and the lower the resulting rms value. To achieve and monitor a high rms value in such a case, an extremely high peak value of the residual current is necessary. In the case of high currents, current transformers tend towards saturation in which a further increase in current on the primary side does not result in an equivalent increase on the secondary side. In the case of extreme peak values of the residual current, the measuring accuracy suffers as a result of this principle. Due to the great difference between the peak value and the rms value, monitoring for lower limits is useful.

4.3.1.3 Internal ground-fault monitoring when using a 2nd generation current / voltage measuring module

Settings

You can parameterize two different response levels (trip level, warning level) for monitoring the ground-fault current.

If the ground-fault current exceeds the response level, the current limit monitoring will respond.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Figure 4-29 "Ground-fault Monitoring" function block

Trip level, warning level

You can parameterize two different response levels (trip level, warning level) for monitoring the ground-fault current.

If the ground-fault current exceeds the response level, the current limit monitoring will respond.

The lowest value for internal ground-fault monitoring that can be set as the warning and trip level is 10 % of the set rated motor current I_s .

Trip level	10 to 120 % of I _s in steps of 1% (default: 30)
Warning level	10 to 120 % of I_s in steps of 1% (default: 30)

Two use cases are distinguished depending on the effective motor current through the measuring module:

- Normal stationary use case up to 2x rated motor current Is: Residual currents greater than the value of the set trip/warning levels are detected. Ground-fault monitoring fulfills the accuracy requirements of IEC 60947-1 Class II-B.
- Temporary starting or overload operation greater than 2x rated motor current Is: Responsiveness in the overload range of > 2x rated motor current is reduced to reduce false tripping. Residual currents of > 1/2 * I_trip level/I_s * I_max (of the effective motor current) are detected.

Response to trip level

Here you can set how SIMOCODE pro should respond if the trip level is overshot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

	D	NAMES AND ADDRESS OF STREET		
i able 4- 28	Response to	"trip level" i	n ground-fault	monitoring

Response	Trip level
deactivated	X (d)
signal	x
warn	—
trip	х
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level

Here you can set how SIMOCODE pro should respond if the warning level is overshot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 29 Response to "warning level" in ground-fault monitoring

Response	Warning level
deactivated	X
signal	X (d)
warn	x
trip	—
delay	0 to 25.5 s (default: 0.1 s)

Hysteresis

Here you can set the hysteresis for the ground-fault current:

Hysteresis

0 to 15% of the level value in steps of 1% Default: 5 %

4.3.1.4 Internal ground-fault monitoring when using a current measuring module or a 1st generation current / voltage measuring module

Response

Here you can set how SIMOCODE pro will respond to an internal ground fault:

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Figure 4-30 "Ground-fault Monitoring" function block

Table 4- 30	"Internal ground-fault mo	nitoring" response
-------------	---------------------------	--------------------

Response	Internal ground fault
deactivated	X (d)
signal	x
warn	X
trip	X
delay	0 to 25.5 s (default: 0.5 s)

You can activate internal ground-fault monitoring by parameterization. It covers two different operating conditions:

- Normal operation up to 2 x I_s. The actual operating current must be smaller than twice the current setting I_s. Residual currents of > 30 % of the current setting I_s are detected.
- Start-up or overload operation to 2 x I_s. The actual operating current is greater than 2x the current setting I_s. Residual currents of > 15 % of the effective motor current will be detected.

Trip level activity, warning level

Unless deactivated, this function is always active, independent of whether the motor is running or not (operating state "ON").

4.3.1.5 External ground-fault monitoring with a 3UF7500 ground-fault module and 3UL22 differential current transformer

Response

Here you can set how SIMOCODE pro will respond to an external ground fault.

You will find more information in Section "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Figure 4-31 "Ground-fault Monitoring" function block

Table 4- 31	"External ground-fa	ault monitoring" response
-------------	---------------------	---------------------------

Response	External ground fault
deactivated	-
signal	X (d)
warn	X
trip	X
delay	0 to 25.5 s (default: 0.5 s) ¹⁾
1) Extension of the residual current transformer delay	

If the response is set to "signal", the message "External ground fault" is generated for a ground fault.

If the response is set to "warn", the message "Warning external ground fault" is generated for a ground fault.

4.3.1.6 External ground-fault monitoring with a 3UF7510 ground-fault module and 3UL23 residual current transformer

Settings

You can parameterize two different response levels (trip level, warning level) for monitoring the ground-fault current.

If the ground-fault current exceeds the response level, the current limit monitoring will respond.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Figure 4-32 "Ground-fault Monitoring" function block

Trip level, warning level

You can parameterize two different response levels (trip level, warning level) for monitoring the ground-fault current.

If the ground-fault current exceeds the response level, the current limit monitoring will respond.

Trip level:30 mA ... 40 A in 10 mA increments (default: 1000 mA)Warning level:20 mA ... 40 A in 10 mA increments (default: 500 mA)

Parameters

4.3 Monitoring functions

Trip level activity, warning level

Unless deactivated, this function is always active, independent of whether the motor is running or not (operating state "ON").

Here you can specify in which motor operating states the trip level / warning level will be active:

•	Always (on)	Trip level / warning level is always active, regardless of whether the motor is running or at a standstill
•	If motor runs, except TPF (run)	Trip level / warning level is only active when the motor is running
•	when the motor is on, except TPF, with startup override (run+)	Trip level / warning level is only active when the motor is running and starting has been completed

Response to trip level

Here you can set how SIMOCODE pro should respond if the trip level is overshot.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 32 Response to "trip level" in ground-fault monitoring

Response	Trip level
signal	X (d)
warn	_
trip	х
delay	0 to 25.5 s (default: 0.5 s) ¹⁾
1) Extension of the residual current transformer delay	

Response to warning level

Here you can set how SIMOCODE pro should respond if the warning level is overshot.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 33 Response to "warning level" in ground-fault monitoring

Response	Warning level
deactivated	X (d)
signal	x
warn	х
trip	—
delay	0 to 25.5 s (default: 0.1 s) ¹⁾
1) Extension of the residual current transformer delay	

Hysteresis

Here you can set the hysteresis for the ground-fault current:

Hysteresis

0 to 15% of the level value in steps of 1% Default: 5 %

Response to sensor fault

Here you can set how SIMOCODE pro should respond to a sensor fault. Open circuit and short-circuit to 3UL23 residual current transformer are recognized as sensor faults.

Response	Sensor fault
deactivated	X (d)
signal	X
warn	х
trip	Х

4.3.2 Current limit monitoring

4.3.2.1 Description of functions of current limit monitoring

Monitoring of current limits is used for process monitoring independent of overload protection.

SIMOCODE pro supports two-phase monitoring of the motor current for freely selectable upper and lower current limit values. The response of SIMOCODE pro can be freely configured and delayed if it reaches a prewarning or trip level.

The motor current is measured using current measuring modules or the current / voltage measuring modules.

- 1) Upper limit
- 2) Lower limit

Figure 4-33 "Current Limits" function block

4.3.2.2 I> (upper limit)

Trip level, warning level

When monitoring current limits I > (upper limit), two different response levels can be parameterized and monitored: I> (upper limit) trip level, I> (upper limit) warning level

If the current of one or more phases exceeds the response level, current limit monitoring responds.

Trip level	0 to 1020 $\%$ of I_s in steps of 4% (default: 0)
Warning level	0 to 1020 % of I_{s} in steps of 4% (default: 0)

Trip level activity, warning level

The trip level / warning level is active only when the motor is running, the startup procedure has been completed and there is no test position feedback (TPF) (run+).

Response to trip level

Here you can define how SIMOCODE pro will respond if the trip level is undershot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Response	Trip level
deactivated	X (d)
signal	X
warn	_
trip	Х
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level

Here you can define how SIMOCODE pro will respond if the warning level is overshot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 35 "Warning level" response for monitoring current limits I >

Response	Warning level
deactivated	X (d)
signal	х
warn	х
trip	—
delay	0 to 25.5 s (default: 0.5 s)

Hysteresis

Here you can set the hysteresis for the current limits I> (upper limit):

Hysteresis

0 to 15% of the level value in steps of 1% Default: 5 %

4.3.2.3 I< (lower limit)

Trip level / warning level

When monitoring current limits I< (lower limit), two different response levels (trip level / warning level) can be parameterized and monitored:

- I< (lower limit) trip level
- I< (lower limit) warning level

If the current of the phases (I_{max}) drops below the response level, the current limit monitor responds.

Trip level	0 to 1020 % of I_s in steps of 4% (default: 0)
Warning level	0 to 1020 % of I_{s} in steps of 4% (default: 0)

Trip level activity, warning level

The trip level / warning level is active only when the motor is running, the startup procedure has been completed and there is no test position feedback (TPF) (run+).

Response to trip level

Here you can define how SIMOCODE pro will respond if the trip level is undershot: See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 36	"Trip level" response for monitoring current limits I <

Response	Trip level
deactivated	X (d)
signal	x
warn	—
trip	x
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level

Here you can define how SIMOCODE pro will respond if the warning level is undershot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 37 "Warning level" response for monitoring current limits I <

Response	Warning level
deactivated	X (d)
signal	x
warn	x
trip	—
delay	0 to 25.5 s (default: 0.5 s)

Hysteresis

Here you can set the hysteresis for current limits I< (lower limit):

Hysteresis

0 to 15% of the level value in steps of 1% Default: 5 %

4.3.3 Voltage monitoring

Description

SIMOCODE pro supports two-phase undervoltage monitoring of either a three-phase network or a single-phase network for freely selectable limits. The response of SIMOCODE pro on reaching a prewarning level or trip level can be freely parameterized and delayed.

Voltage measurement is performed using current / voltage measuring modules. This is based on the minimum voltage of all voltages U_{min} .

Note

Please note that only phase voltages are available with SIMOCODE pro V PB basic units up to version *E06*. If required, the line-to-line voltage can be calculated from the phase voltage using the logic module "Calculator 1/2" as follows: Line-to-line voltage = phase voltage * 1.73.

From version *E07* onward, either phase voltage or line-to-line voltage can be used as the basis for monitoring.

1) Hysteresis for voltage, cos phi, power

Figure 4-34 "Voltage Monitoring" function block

Furthermore, even when the motor is switched off, SIMOCODE pro can determine and signal the further availability of the feeder by measuring the voltage directly at the circuit breaker or at the fuses in the main circuit.

Trip level, warning level

You can parameterize two different response levels (trip level/warning level). If the current of one or more phases undershoots the response level or the warning level, voltage monitoring responds.

Trip level:	0 to 2040 V in steps of 8 V (default: 0)
Warning level:	0 to 2040 V in steps of 8 V (default: 0)

Trip level activity, warning level

Here you can specify in which motor operating states the trip level / warning level will be active:

•	Always (on) ¹⁾	Trip level / warning level is always active, regardless of whether the motor is running or at a standstill	
•	Always, except TPF (on+) (default)	Trip level / warning level always effective, regardless of whether the motor is running or at a standstill; Exception: "TPF", i.e. motor feeder is in test position	
•	If motor runs, except TPF (run)	Trip level / warning level only active if the motor is ON and not in the test position	
1) When using the SIMOCODE pro V PB basic unit (product version *E03* and higher) with			

a current/voltage measuring module

Response to trip level

Here you can set how SIMOCODE pro should respond if the trip level is undershot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 38 "Trip level" response for voltage monitoring

Response	Trip level
deactivated	X (d)
signal	х
warn	—
trip	х
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level

Here you can set how SIMOCODE pro should respond if the warning level is undershot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 39	"Warning leve	el" response	for voltage	monitoring

Response	Warning level
deactivated	X (d)
signal	х
warn	х
trip	_
delay	0 to 25.5 s (default: 0.5 s)

Hysteresis for voltage, cos phi, power

Here you can set the hysteresis for voltage, cos phi and power.

Hysteresis for voltage, cos phi, power

0 to 15% of the level value in steps of 1% (default: 5 %)

4.3.4 Cos phi monitoring

Description

Cos phi monitoring monitors the load condition of inductive loads. The main field of application is for asynchronous motors in 1-phase or 3-phase networks with loads that fluctuate significantly. The power factor fluctuates more than either the motor current or the active power does, particularly in the low-end performance range of a motor. Therefore, power factor monitoring is particularly suitable for distinguishing between no-load operation and faults, e.g. a broken drive belt or drive shaft. If the set trip level or warning level is undershot, a signal is generated or the motor is switched off, depending upon the setting.

 Hysteresis for voltage, cos phi, power (see "Voltage Monitoring" function block)

Figure 4-35 "Cos Phi Monitoring" function block

Trip level, warning level

You can parameterize two different response levels (trip level / warning level) for cos phi monitoring.

Trip level	0 to 100 % (default: 0 %)
Warning level	0 to 100 % (default: 0 %)
0 % = cos phi = 0.00	
50 % = cos phi = 0.50	
100 % = cos phi = 1.00	

Trip level activity, warning level

The trip level / warning level is active only when the motor is running, the startup procedure has been completed and there is no test position feedback (TPF) (run+).

Response to trip level

Here you can define how SIMOCODE pro will respond if the set trip level is undershot: See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 40 "Trip level" response for cos phi monitoring

Response	Trip level
deactivated	X (d)
signal	х
warn	—
trip	х
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level

Here you can define how SIMOCODE pro will respond if the set warning level is undershot. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 41	"Warning level"	response for cos	phi monitoring
-------------	-----------------	------------------	----------------

Response	Warning level
deactivated	X (d)
signal	x
warn	x
trip	—
delay	0 to 25.5 s (default: 0.5 s)

4.3.5 Active power monitoring

Description

SIMOCODE pro can indirectly monitor the state of a device or system via the active power. For example, by monitoring the active power of a pump motor, conclusions can be drawn from the active power level about the flow rate or fluid fill levels. The active power curve of a motor is a precise reflection of its actual load across the entire range. Excess load results in increased wear of the motor and, thus, may lead to premature motor failure. Insufficient active power can, for example, be a sign of no-load motor operation.

SIMOCODE pro allows two-phase active power monitoring for freely selectable upper and lower limits. The response of SIMOCODE pro when a prewarning or trip level has been reached can be freely parameterized and delayed.

The active power is measured by means of current / voltage measuring modules.

(see "Voltage Monitoring" function block)

Figure 4-36 "Power Monitoring" function block

Trip level, warning level

With active power monitoring, you can parameterize two different response levels (trip level / warning level) for the upper and lower limits.

Trip level

- P> (upper limit) 0.000 to 4294967.295 kW (default: 0.000 kW)
- P < (lower limit)

Warning level

- P> (upper limit)
 0.000 to 4294967.295 kW (default: 0.000 kW)
- P < (lower limit)

Trip level activity, warning level

The trip level / warning level is active only when the motor is running, the startup procedure has been completed and there is no test position feedback (TPF) (run+).

Response to trip level P> (upper limit), P< (lower limit)

Here, you can define the response of SIMOCODE pro in the event that the monitored variable overshoots/undershoots the set trip level: For further information, see also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Response	Trip level
deactivated	X (d)
signal	Х
warn	_
trip	Х
delay	0 to 25.5 s (default: 0.5 s)

Table 4- 42 "Trip level" response for active power monitoring

Response to warning level P> (upper limit), P< (lower limit)

Here, you can define the response of SIMOCODE pro in the event that the monitored variable overshoots/undershoots the set warning level: For further information, see also "Tables of responses of SIMOCODE pro" in Chapter

For further information, see also "Tables of responses of SIMOCODE pro" in Cha Important notes (Page 7).

Table 4- 43 "Warning level" response for active power monitoring

Response	Warning level
deactivated	X (d)
signal	x
warn	x
trip	—
delay	0 to 25.5 s (default: 0.5 s)

4.3.6 0/4 - 20 mA monitoring

Description

With the aid of an analog module, SIMOCODE pro is capable of measuring and monitoring further process variables as desired. For example, the fill level can be monitored to protect a pump against dry operation, or a differential pressure transducer can be used to monitor the degree of pollution in a filter. If the fill level undershoots a specified level, the pump can be switched off and, if a specific differential pressure value is exceeded, the filter must be cleaned.

Figure 4-37 "0/4 to 20 mA monitoring" function block

SIMOCODE pro supports two-phase monitoring of the analog signals of a transducer (standardized 0/4-20 mA output signal). The analog signals are routed via the analog module to the 0/4-20 mA (AM1) and 0/4-20 mA (AM2) monitoring function blocks (AM2 only in conjunction with the SIMOCODE pro V PN and pro V EIP basic units).

Trip level, warning level

With 0/4-20 mA monitoring, you can parameterize two different response levels (trip level / warning level) for the upper and lower limits.

Trip level

Warning level

0/4 to 20 > (upper limit)
 0.0 ... 23.6 mA / 4.0 ... 22.9 mA (default: 0.0 / 4.0 mA)

• 0/4 to 20 < (lower limit)

0.0 ... 23.6 mA / 4.0 ... 22.9 mA (default: 0.0 / 4.0 mA)

0/4 to 20 > (upper limit)
0/4 to 20 < (lower limit)

Trip level activity, warning level

Here you can specify in which motor operating states the trip level / warning level will be active:

•	Always (on)	Trip level / warning level is always active, regardless of whether the motor is running or at a standstill
•	Always, except TPF (on+)	Trip level / warning level is always active regardless of whether the motor is running or at a standstill, with the exception of "TPF," i.e. motor feeder is in the test position
•	If motor is on, except TPF (run)	Trip level / warning level only active if the motor is ON and not in the test position
•	If motor is on except TPF, with startup override (run+)	Trip level / warning level is only active when the motor is running, the startup procedure has been completed, and no test position (TPF) is detected
Response to trip level 0/4 to 20 mA > (upper limit), 0/4 to 20 mA < (lower limit)

Here, you can define the response of SIMOCODE pro in the event that the monitored variable overshoots/undershoots the set trip level: For further information, see also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 44	"Trip level" response for 0/4 to 20 mA monitoring

Response	Trip level
deactivated	X (d)
signal	x
warn	_
trip	х
delay	0 to 25.5 s (default: 0.5 s)

Response to warning level 0/4 to 20 mA > (upper limit), 0/4 to 20 mA < (lower limit)

Here, you can define the response of SIMOCODE pro in the event that the monitored variable overshoots/undershoots the set warning level:

For further information, see also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 4- 45 "Warning level" response for 0/4 to 20 mA monitoring

Response	Warning level
deactivated	X (d)
signal	х
warn	х
trip	—
delay	0 to 25.5 s (default: 0.5 s)

Marking

The marking is saved in the device and assigned and displayed in the Faults / Warnings online dialog. Optional marking for identifying the message, e.g. "0/4 to 20 >"; range: maximum 10 characters.

Note

Changing the marking of Ethernet and PROFINET connections

Each change to the marking requires that the communication interface be restarted when the web server is active. A new start interrupts all Ethernet and PROFINET links and reestablishes them afterward.

Hysteresis for 0/4 to 20 mA

Here you can set the fluctuation range for the analog signal:

Hysteresis for the analog signal

0 to 15 % in steps of 1 % (default: 5 %)

Note

Monitoring of a second process variable via input 2 of the analog module can be done, for example, by free limit monitors.

4.3.7 Operation monitoring

4.3.7.1 Operation monitoring

Motor operation monitoring - use

SIMOCODE pro can monitor the operating hours and stop times of a motor and restrict the number of startups in a defined time frame to avoid plant downtimes due to failed motors caused by running or being stopped for too long.

If an adjustable limit value is exceeded, a signal or warning can be generated that indicates maintenance or replacement of the motor in question is required. After the motor has been replaced, the operating hours and stop times can be reset, for example.

To avoid excessive thermal loads and premature wear of the motor, it is possible to limit the number of motor startups for a specifiable period. The number of still possible starts is available in the SIMOCODE pro for further processing.

The limited number of possible starts can be indicated by prewarnings.

Note

Operating hours, motor stop times and the number of motor starts can be monitored completely in the device and/or transmitted to the automation system via the communication bus.

Figure 4-38 "Operation Monitoring" function block

Parameters

4.3 Monitoring functions

Response

Table 4- 46 "Operation monitoring" response

Response	Operating hours monitoring - level	Stop time monitoring - level	Number of starts - overshoot	Number of starts - prewarning
deactivated	X (d)	X (d)	X (d)	X (d)
signal	Х	Х	Х	Х
warn	Х	Х	Х	Х
trip	_	_	Х	_

4.3.7.2 Operating hours monitoring

Motor operating hours monitoring - use

The motor operating hours monitoring function enables the operating hours (service life) of a motor to be recorded so that motor maintenance prompts can be generated in good time as applicable.

Level

If the operating hours exceed the set response level, the monitoring function responds.

Level 0 to 1193046 hours (default: 0 h)

Active status

Unless deactivated, this function is always active, independent of whether the motor is running or not (operating state "ON").

Response

You can define the response to overshoot here.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Operation monitoring (Page 147).

4.3.7.3 Motor stop time monitoring

Motor stop time monitoring - use

System parts for important processes often have dual drives (A and B drives). Ensure that these are always operated alternately. This prevents long motor stop times and reduces the risk of non-availability.

The motor stop time monitoring function can be used, for example, to generate an interrupt, thus initiating connection of the motor.

Level

The length of the permissible motor stop time is stipulated here; if exceeded, the monitoring function responds.

Level 0 to 65535 hours (default: 0 h)

Active status

Unless deactivated, this function is always active, independent of whether the motor is running or not (operating state "ON").

Response

You can define the response to overshoot of the permissible stop time here:

See also "Tables of responses of SIMOCODE pro" in Important notes (Page 7) and Table "Response of operation monitoring" in Operation monitoring (Page 147).

4.3 Monitoring functions

4.3.7.4 Monitoring the number of starts

Number of starts monitoring - use

Monitoring the number of starts can protect system parts (motors and switching devices such as soft starters and converters) from too many start processes within a parameterizable time frame and thus prevent damage. This is also particularly useful for commissioning or manual control.

The schematic below illustrates the principle of monitoring the number of starts:

Figure 4-39 Monitoring the number of starts

Permissible starts

The maximum permissible number of starts is set here. The time interval "Time range for starts" commences to run after the first start. After the second to last permissible start has been executed, the "Just one start possible" pre-warning is generated.

Permissible 1 to 255 (default: 1) starts:

Time range for starts

The time range for permissible start processes is set here. The maximum number of starts is only available again after the parameterized time range for starts has elapsed. The number of available starts is shown by the analog value "Permissible starts - Actual value".

Time range 00:00:00 to 18:12:15 hh:mm:ss (default: 00:00:00) for starts:

Active status

Unless deactivated, this function is always active, independent of whether the motor is running or not (operating state "ON").

Response to overshoot

You can define the response to overshoot of the number of starts within the time range for starts here:

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Operation monitoring (Page 147).

Response to pre-warning

You can define the response after the penultimate start here.

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7) and Table "Responses" in Chapter Operation monitoring (Page 147).

Interlocking time

If a new start command is issued within the time range for starts after the last permissible start, this new start command will no longer be executed if the setting "Response to overshoot - tripping" has been set. "Fault - No. of starts >" will be displayed and the set interlocking time activated.

Interlocking 00:00:00 to 18:12:15 hh:mm:ss (default: 00:00:00) time

4.3 Monitoring functions

4.3.8 Temperature monitoring (analog)

Schematic and characteristic curve

Temperature monitoring of, for example, motor windings, motor bearings, coolant and gearbox temperature, can be carried out via up to three analog temperature sensors such as NTC, KTY 83/84, PT100, PT1000.

SIMOCODE pro supports two-phase monitoring for overtemperature: Separate levels for warning and tripping temperature can be set.

Temperature monitoring takes into account the highest temperature of all the sensor measuring circuits of the temperature module.

Figure 4-40 "Temperature Monitoring" function block

Settings

Table 4- 47	"Temperature	monitoring" settings
-------------	--------------	----------------------

Temperature	Description
Trip level T >	-273° - 65262°C (default: -273°)
Response to trip level T >	Setting of response when the temperature is overshot (see the following table and Chapter Important notes (Page 7))
Marking for trip level T >	No parameters. Optional marking for identifying the message, e.g. "Temperature>"; range: Maximum 10 characters
Warning level T >	-273° - 65262°C (default: -273°)
Response to warning level T >	Setting of response when the temperature is overshot (see the following table and Chapter Important notes (Page 7))
Marking warning level T >	No parameters. Optional marking for identifying the message, e.g. "Temperature>"; range: maximum 10 characters.
Hysteresis	0° to 255°C in steps of 1°C (default: 5°C)

Trip level activity, warning level

The trip level / warning level is always active, independent of whether the motor is running or not (operating state "ON").

Response

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Overtemperature: Here you can select how SIMOCODE pro should respond when the temperature has overshot the warning level / trip level.

Table 4-48 "Overtemperature" response

Response	Warning level T >	Trip level T >		
deactivated	X (d)	_		
signal	х	X (d)		
warn	х	—		
trip	_	Х		

Note

With motors for EEx e applications, the response must be set to "trip"!

Note

The sensor type, the number of measuring circuits in use and the response to a sensor fault must be set in the Temperature module inputs (TM1 / 2 inputs) function block if temperature monitoring is used.

Note

To monitor several sensor measuring circuits individually and independently, a suitable number of free limit monitors can be connected to the temperature module inputs (TM1 / 2 inputs) function block and differing limits set for the individual temperature sensors, instead of the temperature monitoring function block.

4.3.9 Monitoring interval for mandatory testing

Description

Function for monitoring the interval between the connection and the tripping of the enabling circuit (actuator tripping). The monitoring time starts anew every time the enabling circuit closes. This function supports you in complying with test intervals that require verification. In the enabling circuit of the DM-F Local and the DM-F PROFIsafe, relay contacts perform safety-related tripping. Whether the relay contacts of the enabling circuit actually open or not, can only be established via a change in the switching state of the contacts. The "Monitoring interval for mandatory testing" function supports the system operator in the monitoring of the time that has elapsed since the last connection of the enabling circuit. When the adjustable limit has been reached, the set reaction follows (deactivated, signal, warn; see response). This is logged in the event memory.

This monitoring function is an organizational measure that supports the system operator in detecting faults by conducting regular tests, see information in the operating instructions on regularly testing the function of a safety device. The monitoring function itself need not be safety-related.

Note

The function "Time until test" is not a safety-related function

Response

You can set the response here. See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Table 1 10	"Safaty related	tripping" recoonse	
1 able 4- 49	Salety-related	inpping response	

Response	
deactivated	X
signal	Х
warn	Х
trip	—

Test interval

Adjustable limit value for the interval for mandatory testing:

Test interval:

0 to 255 weeks (default: 0)

4.3.10 Hysteresis for monitoring functions

The following diagram illustrates the function of the hysteresis for monitoring functions:

TL = Trip level (trip) WL = Warning level (warn) 4.4 Outputs

4.4 Outputs

4.4.1 Overview of outputs

Description

SIMOCODE pro has various outputs. These are represented by different function blocks in SIMOCODE pro. They are the external SIMOCODE pro interfaces. Within SIMOCODE pro, the outputs are represented as plugs on the corresponding function blocks and can be assigned to any functions or events via connections.

Outputs include:

- Output terminals Ø, located on the outside of basic unit, digital modules, and on the analog module
- LEDs on the operator panel for visualizing the operating state or different statuses
- Outputs to PROFIBUS DP (cyclic and acyclic).

Schematic

The following schematic shows a general representation of the various types of output:

Figure 4-43 General representation of the various output types

Scope and application

Outputs are used, e.g. for controlling motor contactors, displaying states or signaling via the communication bus. The system provides different types of output depending on the device series and the expansion modules in use:

Table 4- 50	Outputs
-------------	---------

Outputs SIMOCODE		CODE				
	pro C	pro S	pro V PB	pro V MB RTU	pro V PN	pro V EIP
Basic unit outputs (BU Outputs)	\checkmark	\checkmark	\checkmark	~	\checkmark	1
Operator panel LEDs (OP LED)	\checkmark	\checkmark	1	✓	\checkmark	1
Digital module 1 outputs (DM1 Outputs)	_	✓ 1)	1	~	\checkmark	1
Digital module 2 outputs (DM2 Outputs)	_	_	1	~	\checkmark	\checkmark
Analog module output (AM1 output/AM2 output)	—	—	√ ²)	✓ 2)	\checkmark	1
Acyclic send data	\checkmark	\checkmark	\checkmark	✓	_	—
(Acyclic send)						
OPC-UA send	_	_	_	_	\checkmark	
Cyclic send data (Cyclic send)	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark

1) for the SIMOCODE pro S basic unit, the DM1 outputs are on the multifunction module.

2) only AM1 output available

4.4 Outputs

4.4.2 Basic unit outputs

Description

SIMOCODE pro has a "BU Outputs" function block with two or three relay outputs. You can, for example, switch contactors or lamps via these relay outputs. For this, the inputs (plugs) of the function block must be connected to the respective sockets (usually the QE contactor controls of the control function). The "BU Outputs" function block consists of:

- Three plugs corresponding to the relay outputs Out1 to Out3
- Three relays
- Output terminals.

In total, one function block "BU outputs" is available on the pro C, pro S, and pro V basic units.

Schematic

The following schematics show the "BU Outputs" function block:

Figure 4-45 Function block "BU outputs," SIMOCODE pro S

Application examples

- Activation of the main contactor in the motor feeder: You can, for example, define which relay output is used for activating the motor contactor in the motor feeder. To do this, connect the desired relay output to the respective "QE..." contactor activation of the control function.
- Activation of lamps for displaying operating states: You can define, for example, which
 relay outputs are to be used for controlling the lamps / LEDs that display the operating
 states of the motor (Fault, ON, OFF, FAST, SLOW...). To do this, connect the desired
 relay output to the respective "QE..." contactor activation of the control function. These
 are provided specially for activating lamps and LEDs. In addition to the status signals, the
 "QL..." lamp controls automatically signal the following using a 2-Hz flashing frequency:
 - Test mode (QLE... / QLA lamp outputs are flashing)
 - Unacknowledged fault (lamp output general fault QLS is flashing)
 - Transfer of any other information, status information, warnings, faults, etc. to the relay outputs.
 - Lamp test: All QL outputs are activated for approx. 2 s.

In most cases, the outputs of the basic unit will be connected to the QE or QL outputs. By referring to Table "Active control stations, contactor controls, lamp controls and status information for the control functions," you can determine which QE outputs are required for which control function.

Settings

Table 4- 51Basic unit output settings

BU outputs	Description
Outputs 1 to 3	Control of the "BU Outputs" function block via any signal (any socket —, e.g. device inputs, PROFIBUS DP control bits, etc.), usually from the QE contactor controls.

Defaults depend on the selected application (template): See Application selection, settings and definitions of control functions (Page 70).

4.4 Outputs

4.4.3 Operator panel LEDs

Description

SIMOCODE pro has an "OP LED" function block for controlling the seven freely assignable LEDs. The LEDs are in the operator panel and can be used to display any status. For this, the inputs (plugs) of the "OP LED" function block must be connected to the respective sockets (e.g. to the sockets for the status information of the control function).

Note

The "OP LED" function block can only be used if the operator panel (OP) is connected and configured in the device configuration!

The "OP LED" function block consists of:

- Four plugs, "OP LED green 1" to "OP LED green 4," corresponding to the green LEDs. The green LEDs are optically / mechanically allocated to the buttons on the operator panel. They normally display feedback concerning the motor operating state.
- Three plugs, "OP LED yellow 1" to "OP LED yellow 3," corresponding to the yellow LEDs.
- Four green LEDs.
- Three yellow LEDs (not for the operator panel with display).

One "OP-LED" function block is available for the SIMOCODE pro C, pro S, pro V, pro V MB RTU, pro V PN and pro V EtherNet/IP basic units.

LEDs of the operator panel

The following diagram shows the front view of the operator panel and the LEDs:

Figure 4-46 LEDs of the operator panel

LEDs of the operator panel with display

The following diagram shows the front view of the operator panel with display and the LEDs:

Figure 4-47 LEDs of the operator panel with display for SIMOCODE pro V

Schematic

The following schematic shows the "OP LED" function block:

Figure 4-48 Schematic of the "OP LED" function block

Note

The three yellow LEDs mentioned in this section are not available for the operator panel with display. Status information can be read out here directly via the display. While it is still possible to connect the corresponding three plugs via the software, they remain non-functional.

Application examples

• Displaying operating states:

You can define which LEDs are to be used for displaying the operating states (Fault, ON, OFF, FAST, SLOW...). To do this, connect the desired LED to the respective "QL." lamp control of the control function.

In many cases, the LEDs are connected with the QL outputs. By referring to Table Active control stations, contactor controls, lamp controls and status information for the control functions (Page 117), you can determine which QL outputs are required for which control functions.

• Transfer of any other information, status information, warnings, faults, etc. to the yellow LEDs.

Settings

Table 4- 52 Operator panel LED settings

OP LED	Description
Green 1 to Green 4	The "OP LED" function block can be activated by any signal (any sockets, e.g. "motor" operating state feedback).
Yellow 1 to Yellow 3 ¹⁾	The "OP LED" function block can be activated by any signal (any sockets, e.g. displays for status, events, faults).
1) No function when using the operator panel with display	

Defaults depend on the selected application (template): See Chapter Application selection, settings and definitions of control functions (Page 70).

4.4.4 Digital module outputs

Description

SIMOCODE pro has two "DM1 Outputs" and "DM2 Outputs" function blocks, which are each equipped with two relay outputs. You can, for example, switch contactors or lamps via these relay outputs. For this, the inputs (plugs of the "DM Outputs" function blocks) must be connected to the respective sockets (e.g. of the control function).

Note

"DM Outputs" function blocks can only be used if the corresponding digital modules (DM) or multifunction modules (MM) are connected and configured in the device configuration!

Each function block has:

- Two plugs, corresponding to relay outputs Out1, Out2
- Two relays
- Output terminals.

The following are available:

- a "DM1 Outputs" function block on the pro S basic unit ¹⁾
- two function blocks "DM1 outputs" and "DM2 outputs" on the basic units pro V.

Note

1) for the SIMOCODE pro S basic unit, the DM1 outputs are on the multifunction module.

Note

In addition to the two jointly-switched fail-safe enabling circuits, the fail-safe DM-F Local and DM-F PROFIsafe digital modules are equipped with two standard relay outputs, the common potential of which is switched off for safety reasons via an enabling circuit.

From a logical connection point of view, the standard relay outputs are always switched. The state of the fail-safe enabling circuits is not affected by the logical wiring.

Schematic

The following schematic shows the "DM Outputs" function blocks:

Figure 4-49 Schematic of the "DM1 Outputs" / "DM2 Outputs" function blocks

4.4 Outputs

Application examples

• Activation of the motor contactor in the motor feeder:

You can, for example, define which relay output is to be used for activating the main contactor in the motor feeder. To do this, connect the desired relay output to the respective "QE" contactor control of the control function.

• Activation of lamps for displaying operating states:

You can define, for example, which relay outputs are to be used for controlling the lamps/LEDs that display the operating states of the motor (Fault, ON, OFF, FAST, SLOW ...). To do this, connect the desired relay output to the respective "QL..." lamp control of the control function.

 Transfer of any other information, status information, warnings, faults, etc. to the relay outputs.

In many cases, the outputs of the digital module will be connected to the QE outputs. By referring to Table Active control stations, contactor controls, lamp controls and status information for the control functions (Page 117), you can determine which QE outputs are required for which control functions.

Settings

Table 4- 53 "DM1 / DM2 Outputs" settings

"DM1 / DM2 Outputs"	Description
Outputs 1 to 2	Control of the "DM1 Outputs" and "DM2 Outputs" function blocks via any signal (any socket, e.g. device inputs, PROFIBUS DP control bits, etc. usually from the QE contactor controls.)

Defaults depend on the selected application (template): See Chapter Application selection, settings and definitions of control functions (Page 70).

4.4.5 Analog module output

Description

You can use analog modules 1 and 2 to expand the pro V PN basic unit with one analog output in each case. The corresponding function blocks "AM1 Output" and "AM2 Output" (AM2 Output only in conjunction with the SIMOCODE pro V PN and pro V EIP basic units) allow every analog value (2 bytes/1 word) in SIMOCODE pro to be output as a 0/4 A - 20 mA signal to a connected pointer instrument, for example. If the function block is activated via the "Assigned analog output value" plug using any integer value between 0 and 65535, an equivalent analog signal of 0 to 20 mA or 4 to 20 mA will be sent to the output terminals of the analog module.

Note

The "AM1 Output" and "AM2 Output" function blocks can only be used if the analog module (AM) is connected and configured in the device configuration.

Schematic

The following schematic shows the "AM1 Output" function block:

Figure 4-50 Function block "AM1 - output"

Settings

Table 4- 54"Analog module output" settings

Signal/value	Range		
Assigned analog output value	Any value (1 word/2 bytes) in SIMOCODE pro		
Output signal	0 to 20 mA (default) or 4 … 20 mA		
Start value of value range	0 to 65535 (default: 0)		
End value of value range	0 to 65535 (default: 0)		

Note

Passive inputs

The inputs of the analog module are passive inputs, i.e. to configure an analog input circuit, each input will require an additional, isolated external current source connected in series. If the output of the analog module is not being used by another application, it can also be used as a current source for an analog module input circuit. The "Start value of value range" and the "End value of value range" of the analog module output have to be set to 65535 for this. Thus, the maximum possible current will always be available via the analog module output.

4.4 Outputs

Application examples

1) Output of the effective motor current - across the entire motor current range

The motor current ranges from 0 to 8 A. The rated current I_{N} of the motor at nominal load is 2 A.

The set current in SIMOCODE ES I_s corresponds to the rated current I_N (2 A). In SIMOCODE pro, the present phase currents or the maximum current (current IL_1, IL_2, IL_3, max. current I_max) are represented as a percentage of the parameterized current setting I_s in accordance with the selected range:

- 0 A motor current corresponds to 0 % of Is
- 8 A motor current corresponds to 400 % of Is
- The smallest unit for the effective motor current in SIMOCODE pro is 1 % (see measured values in data record 94, manual Parameterizing SIMOCODE pro (https://support.industry.siemens.com/cs/ww/en/view/109743958)).

Figure 4-51 Application example: Motor current output - entire range

As a result,

- The "Start value of value range" to be selected is: 0
- The "End value of value range" to be selected is: 400.

When the parameterized "Output signal" = 0 to 20 mA:

- 0 % motor current: 0 mA at the analog module output
- 400 % motor current: 20 mA at the analog module output.

When the parameterized "Output signal" = 4 to 20 mA:

- 0 % motor current: 4 mA at the analog module output
- 400 % motor current: 20 mA at the analog module output.

2) Output of the effective motor current - only part of the motor current range (overload range)

The motor current ranges from 0 to 8 A. The rated current I_{N} of the motor at nominal load is 2 A.

The set current in SIMOCODE ES I_s corresponds to the rated current I_N (2 A). However, only the overload range (2 A - 8 A) is to be displayed on an instrument via the analog module output. In SIMOCODE pro, the present phase currents or the maximum current (current IL_1, IL_2, IL_3, max. current I_max) are represented as a percentage of the parameterized current setting I_s in accordance with the selected range:

- 2 A motor current corresponds to 100 % of Is
- 8 A motor current corresponds to 400 % of Is
- The smallest unit for the effective motor current in SIMOCODE pro is 1 % (see measured values in data record 94, manual Parameterizing SIMOCODE pro (https://support.industry.siemens.com/cs/ww/en/view/109743958)).

Figure 4-53 Application example: Motor current output - Overload range

As a result,

- The "Start value of value range" to be selected is: 100
- The "End value of value range" to be selected is: 400.

Figure 4-54 Application example: Motor current output - output value to function block AM1 output

When the parameterized "Output signal" = 0 to 20 mA:

- 100 % motor current: 0 mA at the analog module output
- 400 % motor current: 20 mA at the analog module output.

When the parameterized "Output signal" = 4 to 20 mA:

- 100 % motor current: 4 mA at the analog module output
- 400 % motor current: 20 mA at the analog module output.

Note

(relating to examples 1 and 2):

In SIMOCODE pro, phase currents are available as a percentage of the current setting I_s . When using the analog module output to display the present motor current on a connected pointer instrument, the present motor current is always indicated as a percentage of the current setting. If the selected control function is for a motor with only one speed, the pointer instrument can display a percentage (% of I_s) and an absolute value (e.g. in A).

In the case of motors / control functions with two speeds and, thus, two current settings (e.g. pole-changing starters or Dahlander starters), the motor current is only shown on the pointer instrument as a percentage of the present current setting I_s1 or I_s2 , depending upon which of the two speeds (slow or fast) currently applies.

3) Output of any analog value from the automation system cyclically via the communication bus

One word (2 bytes) can be transmitted cyclically from the automation system to SIMOCODE pro via PROFIBUS; two words (2 times 2 bytes) can be transmitted via PROFINET. Any value can be output as a 0/4 to 20 mA signal by directly connecting this cyclic control word to the analog module output. If the transmitted value is in S7 Format (0 to 27648), this must be taken into consideration when parameterizing:

Figure 4-55 Output of an analog value from the automation system

As a result,

- The "Start value of value range" to be selected is: 0
- The "End value of value range" to be selected is: 27648.

When the parameterized "Output signal" = 0 to 20 mA

- 0: 0 mA at the analog module output
- 27648: 20 mA at the analog module output.

When the parameterized "Output signal" = 4 to 20 mA

- 0: 4 mA at the analog module output
- 27648: 20 mA at the analog module output.

4.4 Outputs

4.4.6 Cyclic Send

Description

The "Cyclic Send" function blocks allow you to specify the information to be transferred cyclically to the automation system via the communication bus.

"Cyclic send" function blocks consist of

- 16 bits (two bytes, byte 0 and byte 1 for binary information)
- up to nine words (= 18 bytes, for up to nine analog values, freely parameterizable).

A total of five "Cyclic Send" function blocks (0, 1, 2/3, 4/9, 10/19) are available.

Schematic

The following schematic shows the "Cyclic send" function blocks:

Figure 4-56 Schematic of the "Cyclic send" function blocks

Cyclic PROFIBUS DP services

Cyclic send data is exchanged between the DP master and the DP slave once in every DP cycle. The DP master sends the cyclic receive data to SIMOCODE pro. In response, SIMOCODE pro sends the cyclic send data to the DP master.

Cyclic services for PROFINET / EtherNet/IP

The cyclic send data is exchanged between the IO Device / adapter (SIMOCODE pro) and the IO Controller / scanner (automation system). The IO Controller sends the cyclic receive data to SIMOCODE pro in each case. In response, SIMOCODE pro returns the cyclic send data.

Cyclic send data settings

Table 4- 55 Cyclic send data settings

Cyclic send data	Description	
Byte 0 / 1, bit 0 - bit 7, basic types 1 ¹⁾ , 2, 3 ²⁾	Setting and resetting of bits by means of any signal (any sockets, e.g. device inputs, send data, etc.)	
Byte 2 / 3, basic types 1 ¹⁾ , 2, 3 ²⁾	Control of one word (two bytes) by means of any analog value (any socket, e.g. maximum current I_{max} , remaining cooling down period, timer actual value, etc.)	
Byte 4 / 5, 6 / 7, 8 / 9, basic type 1, 3 ¹⁾	Assignment of three words (six bytes) by means of any analog value (any socket)	
Byte 10/11, 12/13, 14/15, 16/17, 18/19, basic type 3 ²⁾	Control of five words (ten bytes) by means of any analog value (any sockets)	
1) for the SIMOCODE pro S, pro V PB and pro V MBR series of devices		
2) only for the SIMOCODE pro V PN and pro V EIP basic units		

Byte 0 of the send data is already preset; byte 2/3 is preset with the max. current I_max.

See also "Telegram description and data access" in the manual "SIMOCODE pro - Communication (https://support.industry.siemens.com/cs/ww/en/view/109743960)".

4.4 Outputs

4.4.7 Acyclic Send

Description

In addition to "Cyclic Send" it is also possible to transfer a further 16 bits of binary information to the PLC / PC via acyclic services. The "Acyclic Send" function blocks allow you to specify the information to be transferred acyclically to the automation system via the communication bus. The inputs (plugs) of the function blocks must be connected to the respective sockets.

The Acyclic Send function blocks consist of:

- Eight bits each (= two bytes, byte 0 and byte 1 for binary information)
- One output each to the communication bus

There are two "Acyclic send" function blocks.

Schematic

The following schematic shows the "Acyclic send" function blocks:

Figure 4-57 Function block "Acyclic send"

Acyclic services

Acyclic send data will only be transferred on request. The information (two bytes) can be found in data record 203. This data record can be read by every master (PLC or PC) that supports the acyclic services of the communication bus.

Settings

Table 4- 56	Acyclic send data settings
-------------	----------------------------

Acyclic send data	Description
Byte 0 to 1, Bit 0 to bit 7	Setting and resetting of bits by means of any signal (any socket, e.g. device inputs, send data, status information, events, etc.)

4.4.8 OPC-UA send

Description

In addition to "Cyclic Send," it is possible to transfer a further 16 bits of binary information via OPC UA.

With the "OPC UA Send" function block, you can specify which information is to be transferred. The inputs (plugs) of the function blocks must be connected to the respective sockets.

The "OPC-UA send" function blocks each consist of eight bits (= two bytes, byte 0 and byte 1 for binary information).

A total of two "OPC-UA Send" function blocks are available.

Schematic

The following schematic shows the "OPC-UA Send" function blocks:

Figure 4-58 "OPC-UA send" function blocks

Settings

Table 4- 57 OPC-UA Send Data settings

OPC-UA Send Data	Description
Bytes 0 to 1, bits 0 to 7	Setting and resetting of bits by means of any signal (any socket, e.g. device inputs, send data, status information, events, etc.)

4.5 Inputs

4.5 Inputs

4.5.1 Overview of inputs

Description

SIMOCODE pro has various inputs. These are represented by different function blocks in SIMOCODE pro. These function blocks are the ingoing SIMOCODE pro interfaces. Within SIMOCODE pro, these inputs are represented as sockets on the corresponding function blocks and can be assigned via connections to any functions. Inputs can be:

- Input terminals Ø, located on the outside of the basic units and digital modules
- Buttons on operator panels (one Test / Reset button, four freely parameterizable buttons), and basic units (one Test / Reset button)
- Temperature module inputs
- Analog module inputs
- Inputs of the communication bus

Schematic

The following schematic shows the general representation of the various input types:

Figure 4-59 General representation of the input types

Scope and application

Inputs are used, for example, to input external signals e.g. via pushbuttons, key-operated switches, etc. These external signals are processed further internally via appropriate connections. The system has different inputs depending upon the device series:

Inputs	SIMOCODE					
	pro C	pro S	pro V PB	pro V MB RTU	pro V PN	pro V EIP
Basic unit inputs (BU Inputs)	~	\checkmark	√	\checkmark	\checkmark	\checkmark
Operator panel buttons (OP Buttons)	\checkmark	1	1	✓	\checkmark	~
Digital module 1 inputs (DM1 Inputs)	_	✓ 1)	1	✓	\checkmark	~
Digital module 2 inputs (DM2 Inputs)	_	_	1	~	\checkmark	~
Temperature module inputs (TM Inputs)	_	1	1	~	\checkmark	~
Analog module inputs (AM Inputs)		_	1	~	\checkmark	~
Acyclic receive (Acycl. receive)	\checkmark	1	1	~	—	_
Cyclic receive (Cycl. receive)	1	1	1	1	\checkmark	1
Ethernet - OPC-UA Receive	_	_	_		\checkmark	_

Table 4- 58 Inputs

1) for the SIMOCODE pro S basic unit, the inputs and the temperature input are on the multifunction module.

4.5 Inputs

4.5.2 Basic unit inputs

Description

SIMOCODE pro has a "BU Inputs" function block with four binary inputs connected to common potential. You can connect, for example, the buttons for a local control station to the inputs. These signals can be further processed in SIMOCODE pro by internally connecting the sockets of the "BU Inputs" function block.

The "BU Inputs" function block consists of:

- Input terminals Ø located on the outside of the basic unit, corresponding to the sockets "BU Input 1" to "BU Input 4"
- Sockets in SIMOCODE pro that can be connected to any plugs, e.g. to the "Control Stations" function block
- A socket for the "TEST / RESET" button: The function of the "TEST / RESET" button is generally dependent upon the operating state of the device:
 - Reset function for the acknowledgement of pending faults
 - Test function for carrying out device tests

In addition, other functions can be assigned to the "TEST / RESET" button (e.g. operation of the memory module and of the addressing plug). See also Chapter Test / Reset (Page 195).

There is 1 "BU Inputs" function block.

Schematic

The following schematic shows the "BU Inputs" function block:

Figure 4-60 Schematic of the "BU Inputs" function block

Application examples

The inputs can be used, for example, for connecting the start and stop buttons of the local control station, which can then be assigned to the "Local Control Station" function block. If assigned accordingly, the input signals can also be used to activate function blocks such as "Reset" or "External Fault."

Power supply to the inputs

See Chapter on "Wiring basic units, expansion modules and the decoupling module" in SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

Settings

Table 4- 59 "Basic unit inputs" settings

Inputs	Description
Debounce time	You can set a debounce time for the inputs, if required. Range: 6, 16, 26, 36 ms (default: 16 ms)

4.5 Inputs

4.5.3 Operator panel buttons

Description

The operator panel contains buttons 1 to 4 as well as the "TEST / RESET" button. Correspondingly, the "OP Buttons" function block is available in SIMOCODE pro with five sockets.

Note

The "OP Buttons" function block can only be used if the operator panel (OP) is connected and configured in the device configuration!

Note

The operator panel with display does not have a Test / Reset button. The allocated functions can be carried out via the operator panel menu or via softkeys. Similarly, the corresponding status signal will then be available at the "OP Test / Reset Button" socket.

- Operator panel, buttons 1 to 4: Buttons 1 to 4 are usually used to input control commands for the motor feeder. Control commands can be, for example:
 - Motor ON (ON >), Motor OFF (OFF) for a direct starter
 - Motor CCW (ON <), Motor OFF (OFF), Motor CW (ON >) for a reversing starter
 - Motor SLOW (ON >), Motor FAST (ON >>), Motor OFF (OFF) for a Dahlander circuit.

However, buttons 1 to 4 are not rigidly assigned to the above mentioned control commands, and can be assigned to other functions via different internal connection of the respective function block socket in SIMOCODE pro.

- "TEST / RESET" button. Operator panel: The function of the "TEST / RESET" button is generally assigned to fixed functions:
 - Reset function for the acknowledgement of pending faults
 - Test function for carrying out device tests.
 - Operation of the memory module or the addressing plug

Nevertheless, the status of the "TEST/RESET" button can be picked off at the corresponding socket of the function block and assigned to further functions in SIMOCODE pro.

See also chapters Test / Reset (Page 195) as well as "Setting the PROFIBUS DP address" and "Backing up and saving parameters" in the SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

Operator panel buttons

The following figure shows the front view of the operator panel and the buttons:

Figure 4-61 Operator panel buttons

Buttons on the operator panel with display

The following figure shows the front view of the operator panel with display and the buttons:

Schematic

The following schematic shows the "OP buttons" function block:

1) For menu-assisted operation on the operator panel with display

4.5 Inputs

4.5.4 Digital module inputs

Description

SIMOCODE pro has two "DM Inputs" function blocks, each with 4 binary inputs connected to common potential. You can connect, for example, the buttons for a local control station to the inputs. These signals can be further processed in SIMOCODE pro by internally connecting the sockets of the "DM Inputs" function blocks.

Note

"DM Inputs" function blocks can only be used if the corresponding digital modules (DM) or a multifunction module (MM) are connected and configured in the device configuration!

Each "DM Inputs" function block consists of:

- Input terminals Ø located on the outside of the digital module, corresponding to the sockets "DM Input 1" to "DM Input 4"
- Sockets in SIMOCODE pro that can be connected to any plugs, e.g. to the "Control Stations" function block.

The following are available:

- A function block "DM1 Inputs" on the SIMOCODE pro S multifunction module
- Two function blocks "DM1 inputs" and "DM2 inputs" on the SIMOCODE pro V basic unit.

Schematic

The following schematic shows the "DM1 / DM2 Inputs" function blocks:

Figure 4-64 Schematic of the "DM1 / DM2 Inputs" function blocks
The following schematic shows the "DM1 Inputs" function block as a DM-F Local fail-safe digital module:

Table 4- 60 Inputs, "DM1 Inputs" function block as a DM-F Local fail-safe digital module

Input	Description
Input	1 - "tripped" state
Start	Start: Start input state (Y33)
Feedback	Feedback: Feedback circuit state (Y34):
	1 - closed, 0 - open
Cascading	Cascading input state (1)
Sensor 1	Sensor circuit 1 state (Y12)
Sensor 2	Sensor circuit 2 state (Y22)

The following schematic shows the "DM1 Inputs" function block as a DM-F PROFIsafe failsafe digital module:

Figure 4-66 Schematic "DM1 Inputs" function block as a DM-F PROFIsafe fail-safe digital module

4.5 Inputs

Input	Description		
input 1	IN1 (84) state		
input 2	IN2 (85) state		
input 3	IN3 (89) state		
Feedback	Feedback circuit state FBC (91):		
	1 - closed, 0 - open		
Sensor 1	—		
Sensor 2	_		

Table 4- 61 Inputs, "DM1 Inputs" function block as a DM-F PROFIsafe fail-safe digital module

Application examples

Digital modules allow the number of binary inputs and binary outputs on SIMOCODE pro V basic unit to be increased in increments. SIMOCODE pro V can thus be extended to a maximum of twelve binary inputs and seven binary outputs. If assigned accordingly, the input signals can be also used to activate, for example, function blocks such as "Reset" or "External Fault". An external fault can be, for example, the binary signal of an external speed monitor, signaling that the nominal speed of a motor has been undershot.

Power supply to the inputs

See "Description of system components \rightarrow Digital module" and "Description of system components \rightarrow Fail-safe digital modules" in SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

Settings

Table 4- 62	"DM1 / DM2	Inputs" settings
-------------	------------	------------------

Inputs	Description
Debounce time	You can set a debounce time for the inputs, if required.
	Range: 6, 16, 26, 36 ms (default: 16 ms). These values apply to digital modules with a 24 V DC input supply.
	The values are approximately 40 ms higher for digital modules with input supplies of 110 to 240 V AC/DC.

Note

Delays for the digital module inputs can only be set, or are only relevant, if "monostable" or "bistable" is set for digital module 1.

If digital module 1 is a DM-F PROFIsafe, then the debouncing time cannot be set.

If digital module 1 is a DM-F Local, then the debouncing times are set using the DIP switch on the front of the DM-F Local.

Non-safety functions (fail-safe digital modules)

- If digital module1 is a DM-F Local, it is a digital module with non-safety inputs, relay outputs and diagnostics in a SIMOCODE pro system.
- If digital module 1 is a DM-F PROFIsafe, it is a digital module with non-safety inputs, relay
 outputs and diagnostics in a SIMOCODE pro system.

Detailed information on fail-safe digital modules: See "Description of system components \rightarrow Fail-safe digital modules" in SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

4.5.5 Temperature module inputs

Description

SIMOCODE pro has a "TM1 Inputs" function block with three analog sockets corresponding to the three sensor measuring circuits of the temperature module. The temperature (in K) of the three measuring circuits can be read from these sockets and processed internally. An additional analog socket always supplies the maximum temperature of all three measured temperatures. Furthermore, the two binary sockets of the function block represent the status of the sensor measuring circuits. The analog values can be processed internally and / or transmitted cyclically to the automation system via the "Cyclic Send" function blocks.

Note

The "TM1 Inputs" function block can only be used if the temperature module (TM) or the multifunction (MM) is connected and configured in the device configuration!

Schematic

The following schematic shows the "TM Inputs" function block:

Figure 4-67 Schematic of the "TM Inputs" function block

Notes on wiring

You can connect up to three 2-wire or 3-wire temperature sensors to a temperature module.

You can connect a 2-wire or 3-wire temperature sensor to a multifunction module.

See "Wiring basic units, expansion modules and the decoupling module" in SIMOCODE pro – System Manual (<u>https://support.industry.siemens.com/cs/ww/en/view/109743957</u>) for further information.

Application examples

Among other things, you can monitor the following motor components:

- Motor windings
- Motor bearings
- Motor coolant temperature
- Motor gearbox oil temperature

The individual temperatures of the three sensor measuring circuits can be monitored independently of each other by connecting free limit monitors.

Settings

Table 4- 63 Temperature module input settings

Temperature module	Description		
Sensor type	PT100 (default), PT1000, KTY83, KTY84, NTC		
Response ¹⁾ to sensor fault/out of range	Deactivated, signal, warn (default), trip		
Number of active sensors 1 sensor, 2 sensors, 3 sensors (default)			
1) see Table "Sensor fault / Out of range response"			

Table 4- 64 "Sensor fault / Out of range" response

Response	Sensor fault/Out of range
deactivated	X
signal	X
warn	X (d)
trip	X
delay	_

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

4.5.6 Analog module inputs

Description

SIMOCODE pro has an "AM1 Inputs" function block with two analog sockets, corresponding to the two analog inputs of the analog module. The effective analog value of each input can be read from these sockets and processed internally. An additional binary socket of the function block represents the status of the analog measuring circuits. The analog values can be processed internally and / or transmitted cyclically to the automation system via the "Cyclic Send" function blocks.

Note

The "AM1 Inputs" function block can only be used if the respective analog module (AM) has been connected and configured in the device configuration!

Schematic

The following schematic shows the "AM1 Inputs" function block:

Figure 4-68 Schematic of the "AM1 Inputs" function block

Application examples

Typical applications are:

- Fill-level monitoring for implementing dry running protection for pumps
- Monitoring of pollution in a filter using a differential pressure transducer.

4.5 Inputs

Settings

Table 4-65 Analog module input settings

Analog module	Description
Input signal	0 to 20mA (default), 4 to 20 mA
Response to open circuit	Signal, warn (default), tripping
Active inputs	1 input (default), 2 inputs

Notes

Note

The value of the analog module inputs is in S7 format.

Note

The inputs of the analog module are passive inputs, i.e. to configure an analog input circuit, each input will require an additional, isolated external current source connected in series. If the output of the analog module is not being used by another application, it can also be used as a current source for an analog module input circuit. The "Start value of value range" and the "End value of value range" of the analog module output have to be set to 65535 for this. Thus, the maximum possible current will always be available via the analog module output.

4.5.7 Cyclic Receive

Description

With the "Cyclic Receive" function blocks, you can specify which cyclic data from the automation system will be further processed in SIMOCODE pro. These will normally be PLC / PCS binary control commands. Connection with the "Control stations" function block in SIMOCODE pro will allow the motor to be controlled via PROFIBUS DP / PROFINET / EtherNet/IP. Direct connection of the analog value with the "AM Output" function block will result in, for example, the cyclic output of the value sent via the communication bus at the output of the analog module.

The "Cyclic receive" function blocks consist of:

- 16 bits (byte 0 and byte 1 for binary information)
- One word (= two bytes, byte 2 to 3 for an analog value, freely programmable) for basic type 1.

Overall there are four "Cyclic Receive" function blocks (0, 1, 2/3, 4/5).

Schematic

The following schematic shows the "Cyclic receive" function blocks:

Figure 4-69 Function schematic of cyclic receive data

Cyclic services

The cyclic data is exchanged between master and slave in every communication cycle. The master sends the cyclic receive data (Cyclic Receive) to SIMOCODE pro each time. SIMOCODE pro responds by sending the cyclic send data (Cyclic Send) to the master.

4.5 Inputs

4.5.8 Acyclic Receive

Description

In addition to "Cyclic Receive", it is possible to transfer further data acyclically to SIMOCODE pro via PROFIBUS DP. With the "Acyclic receive" function block, you can specify which acyclic information from the PROFIBUS DP will be further processed in SIMOCODE pro. With the "Acyclic receive" function block, you can specify which information will be further processed in SIMOCODE pro.

The "Acyclic receive" function blocks consist of:

- Eight bits each (byte 0 and byte 1 for binary information)
- One word (= two bytes, byte 2 to 3 for an analog value, freely parameterizable).

Overall there are three "Acyclic receive" function blocks (0, 1, 2/3)

Schematic

The following schematic shows the "Acyclic receive" function blocks:

Figure 4-70 Function schematic of acyclic receive data

Acyclic services

Acyclic data are transferred only on request.

The information (4 bytes) can be found in data record 202. This data record can be written by every master (PLC or PC) that supports the acyclic services of PROFIBUS DPV1. Connection monitoring is activated every time the data record is received. The content of the data record is deleted after a 5-second time-out has elapsed.

4.5.9 OPC UA Receive

Description

In addition to "Cyclic Receive," it is possible to transfer further data to SIMOCODE pro via OPC-UA. With the "OPC UA Receive" function block, you can specify which information will be further processed in SIMOCODE pro. For this, you only have to link the sockets of the "OPC-UA Receive" function blocks to any other function blocks in SIMOCODE pro.

The "OPC-UA Receive" function blocks consist of:

- Eight bits each (= two bytes, byte 0 and byte 1 for binary information)
- One word (= two bytes, byte 2 to 3 for an analog value, freely parameterizable).

A total of three "OPC-UA Receive" function blocks (0, 1, 2/3) are provided.

Schematic

The following schematic shows the "OPC-UA Receive" function blocks:

Figure 4-71 Schematic of the "OPC-UA Receive" function blocks

4.6 Analog value recording

4.6.1 Analog value recording description of functions

The "Analog Value Recording" function block can be used to record any analog values (2 bytes / 1 word) in SIMOCODE pro over a set period of time. For example, you can use this function block to record the characteristic curve of the motor current during motor startup.

The recording is made directly in SIMOCODE pro, related to the motor feeder, and independently of the communication bus or the automation system. Every analog value present at the "Allocated analog value" analog socket is recorded and saved. Recording starts on the basis of the edge (positive / negative) via any binary signal at the trigger input of the function block. Up to 60 values can be saved internally in the device. The time frame of the recording is indirectly determined by the selected sampling rate:

Sampling time = sampling rate[s] * 60 values

The pre-trigger can be used to specify how far in advance the recording should commence before the trigger signal is issued. The pre-trigger is set as a percentage of the entire sampling time. In addition, with SIMOCODE ES you can also export the measured curve into a *.csv file for further processing, for example, in MS Excel.

4.6.2 Measured curve, function block and analog value recording application example

Measured curve

Figure 4-72 Analog value recording of measured curve

The old measured curve will be overwritten in SIMOCODE pro each time a new trigger signal is sent to the trigger input.

Schematic

The following schematic shows the "Analog Value Recording" function block:

Figure 4-73 Schematic of the "Analog Value Recording" function block

Parameters

4.6 Analog value recording

Settings

Table 4- 66 "Analog value recording" settings

Signal / value	Range
Trigger input 💻	Activate analog value recording with any signal (any sockets —, e.g. device inputs, current flowing)
Allocated analog value	Any value (1 word / 2 bytes) in SIMOCODE pro
Trigger edge	positive (default) / negative
Sampling rate	0.1 to 50 s, in steps of 0.1 s (default: 0.1 s)
Pre-trigger	0 to 100 % in steps of 5 % (default: 0 %)

Application example

Record the motor current when the motor starts / sampling time = 12 s / pre-trigger = 25 % (3 s):

Figure 4-74 Application example of the analog value recording

4.7.1 Overview of standard functions

Description

So-called "Standard functions" in the form of function blocks are also stored in SIMOCODE pro, and can be used as required. These function blocks may contain:

- Plugs
- Sockets in the form of status information
- Setting values, e.g. the response when an external fault occurs ("signal," "warn," or "trip").

Schematic

The following schematic shows the general representation of the function block of a standard function:

Figure 4-75 General representation of the function block of a standard function

Scope and application

These function blocks work independently of the selected control function and can be used as optional supplements. They are ready to use and only require activating by connecting the plug(s) of the respective function block. Depending on the device series, the system offers several different function blocks for such standard functions.

Standard function block	SIMOCODE					
	pro C	pro S	pro V PB	pro V MB RTU	pro V PN	pro V EIP
Test	2	2	2	2	2	2
Reset	3	3	3	3	3	3
Test Position Feedback (TPF)	1	1	1	1	1	1
External fault	4	4	6	6	6	6
Operational Protection Off (OPO)	_	—	1	1	1	1
Power failure monitoring (UVO)	_		1	1	1	1
Emergency start	1	1	1	1	1	1
Watchdog (PLC / PCS monitoring)	1	1	1	1	1	1
Time stamping	_		1	1	1	1
Safety-related tripping	_		1	1	1	1

Table 4- 67 Function blocks

4.7.2 Test / Reset

Test / Reset description

The function of the "TEST / RESET" button on the basic unit or operator panel is generally dependent upon the operating state of the device:

- Reset function: If a fault occurs
- Test function: In other operating states.

In addition to the TEST / RESET buttons, SIMOCODE pro allows internal Test / Reset tripping via the "Test" function blocks. The "Test" function block consists of one plug.

In total, two function blocks, "Test 1" and "Test 2," are provided, each function block having a slightly different function:

- Test 1: Tests / trips the output relays
- Test 2: Does not trip the output relays (normally for testing via the bus).

Schematic

The following schematic shows a general representation of the "Test / Reset" function blocks:

Figure 4-76 "Test / Reset" function blocks

1) The operator panel with display does not have a "TEST/RESET" button. The respective functions can be carried out via the operator panel menu or via softkeys.

Parameters

4.7 Standard functions

Testing

Testing can be carried out as follows:

- Via the "TEST / RESET" button on the basic unit and on the operator panel (can be deactivated), as well as via PC with SIMOCODE ES software.
- Via the plugs of the internal "Test 1" or "Test 2" function blocks
- Via the menu of the operator panel with display (e.g. the "Commands" menu item).

Testing can be terminated at any time - it does not influence the thermal motor model of the overload function, i.e. after switching off via test, the system can be reset immediately. Tripping only occurs for Test 1 when the operating mode is set to "Remote."

Reset function

Resetting can be carried out as follows:

- Via the "TEST / RESET" button on the basic unit and on the operator panel (can be deactivated), as well as via PC with SIMOCODE ES software.
- Using the "Reset input" plug of the internal function blocks via the plugs of the internal function blocks "Reset 1," "Reset 2," and "Reset 3."
- Via the menu of the operator panel with display (e.g. the "Commands" menu item).

The "Reset" function block consists of one plug.

There are three function blocks "Reset 1" to "Reset 3."

All reset inputs (sockets) have equal priority (or function).

Test function

A SIMOCODE pro function test can also be initialized via the test function. The test function comprises the following steps:

- Lamp / LED test (test function activated for < 2 s)
- Test of the device functionality (test function activated for 2 to 5s)
- Switching off the QE (test function activated for > 5 s). The QE can only be switched off using the "Test 1" function block and in the "Local 1-3" operating mode using the "TEST/RESET" button on the basic unit / operator panel.

Test phases

The following table shows the test phases performed when the "TEST / RESET" button is pressed for the required length of time:

Table 4- 68 State	es of the status LEDs /	contactor c	controls during	testing
-------------------	-------------------------	-------------	-----------------	---------

Test phase	State	Without main curre	With main current			
		ОК	Fault ¹⁾	ОК		Fault
		Hardware te	st / lamp test			
< 2s	"DEVICE" LED	O orange	O green	O orang	je	O green
	"GEN. FAULT" LED	0	0	\bigcirc		0
	Contactor control	Unchanged	Unchanged	Unchang	ed	Unchanged
	Show QL	0	0	0		0
Results of the hardware test / lamp test						
2 to 5s	"DEVICE" LED	O green	O red	O greer	ı	O red
	"GEN. FAULT" LED	\bigcirc	0	\otimes		0
	Contactor control	Unchanged	Deactivated	Unchanged Deactivated		Deactivated
Relay test						
> 5s	"DEVICE" LED	O green	O red	O greer	ı	O red
	"GEN.FAULT" LED	0	0	\bigcirc		0
	Contactor control	Deactivated	Deactivated	Deactivat	ed	Deactivated
C LED light	LED lighted/switched on		off			
1) "Fault" on	ly displayed after 2 s					

Test settings

Table 4- 69 Test settings

Test 1 to 2	Description
Input	Activation of the "Test" function block by any signal (any sockets, e.g. device inputs, communication bus control bits, etc.).
Test / Reset buttons blocked	The blue TEST/RESET buttons on the basic unit and the operator panel are usually intended for acknowledging faults and for performing a device test.
	The buttons can be disabled with "TEST/RESET keys disabled". These can then be used for other purposes. On the operator panel with display, blocking is carried out via the corresponding menu function. (Default: not disabled)

Acknowledgment of faults

Generally, the following applies to the acknowledgement of faults:

- Faults can only be acknowledged
 - if the cause of the fault has been eliminated
 - if there is no "ON" control command pending.
- A reset will not be possible if the cause of the fault has not been eliminated and / or if an "ON" control command is pending. The reset will be saved depending on the type of fault. Saving a reset is indicated by the "GEN. FAULT" LED on the basic unit and on the operator panel. The LED changes from flashing to continuous signal.

Automatic acknowledgement of faults

Faults are automatically acknowledged in the following cases:

- A reset has been saved and the cause of the fault is no longer present (user has previously acknowledged the fault)
- Auto reset of an overload trip or thermistor trip if motor protection reset = Auto (an automatic acknowledgment is issued here after expiry of the cooling down period). The motor cannot start immediately since reset cannot be performed when an ON command is pending.
- If a configured module fails, all related faults will be acknowledged automatically. However, a configuration fault will be generated (exception: operator panel, if parameterized accordingly). This ensures that a module fault does not cause the general fault to be acknowledged automatically.
- If a function or module is deactivated in the device configuration (via parameterization), all related faults are acknowledged automatically. The motor cannot start immediately since parameters cannot be entered if an ON command is pending.
- If a parameter of a function is changed from "trip" to "warn", or to "signal" or "deactivated", all related faults will be acknowledged automatically.
- For an external fault: With its own parameter: "Auto-Reset."

Reset settings

Reset 1 to 3	Description
Input	Activation of the "Reset" function block by any signal (any sockets, e.g. device inputs, communication bus control bits, etc.).
TEST/RESET buttons blocked	The blue Test / Reset buttons on the basic unit and the operator panel are usually intended for acknowledging faults and for performing a device test.
	The buttons can be disabled with "TEST/RESET keys disabled". These can then be used for other purposes. On the operator panel with display, the buttons are disabled via a menu function (default: not disabled).

Table 4-70 Reset settings

4.7.3 Test position feedback (TPF)

Description

You can carry out the "Cold run" function test using the "Test Position Feedback (TPF)" function block. For this purpose, the function block input (plug) must be connected to the respective socket. The activated test position will be indicated by the flashing QL of the control function.

The "Test Position Feedback (TPF)" function block consists of

- one plug
- a "Status test position" socket. It is set if a signal is pending at the input.
- one "Fault test position feedback error" socket. It is set when
 - "TPF" is activated although current is flowing in the main circuit
 - "TPF" is activated and current is flowing in the main circuit.

In total, one "Test Position Feedback" function block is available.

Note

When the test position is enabled, the QLE / QLA sockets of the control function are activated, to indicate test operation of the motor feeder via a flashing button LED, for example.

Schematic

The following schematic shows the "Test Position Feedback" function block:

Figure 4-77 "Test Position Feedback" function block

Parameters

4.7 Standard functions

Cold run

If the motor feeder is in the test position, its main circuit is isolated from the network. However, the control voltage is connected.

The "cold run" function test is performed with the feeder in this state. This means the motor feeder is tested without a current in the main circuit.

To differentiate this function from normal operation, it must be enabled via the socket on the function block.

Feedback stating that the motor feeder is isolated from the line voltage on the primary current side can be implemented, for example, via an auxiliary contact of the main switch in the motor feeder that is connected to any device input (terminal). This is then internally connected to the "Test position feedback (TPF) - Input" plug of the function block. When using current / voltage measuring modules, this type of auxiliary contact is entirely unnecessary. The "TPF" function block can be activated by monitoring for undervoltage ("Voltage Monitoring" function block).

Thereafter, the contactor outputs can be set via the control stations (see Chapter Description of functions of control stations (Page 56)), enabling the current-free status to be tested.

If current flows erroneously during test operation, the contactor outputs are switched off by "Fault - Test Position Feedback (TPF)."

Fault message "Fault - Test Position Feedback (TPF)" and acknowledgment

Note

"Fault - Test Position Feedback (TPF)" will be generated if:

- "TPF" is activated, although current is flowing in the motor feeder
- "TPF" is activated and current is flowing in the motor feeder.

Acknowledge with "Reset."

Settings

Table 4- 71 Test Position Feedback (TPF) settings

Test Position Feedback (TPF)	Description
Input	Activation of the "Test position feedback (TPF)" function block by any signal (any sockets, e.g. device input)
Туре	Specification of the input logic:
	NO contact (1-active) (default)
	NC contact (0-active)

4.7.4 External fault

Description

The "External Fault 1 to 6" function blocks can be used to monitor any statuses and/or external devices, to generate fault messages and, if necessary, to switch off the motor. To do this, the inputs (plugs) of the External Fault function blocks must be connected to any sockets (e.g. device inputs, communication bus control bits, etc.). External faults can also be "marked" in SIMOCODE pro. This facilitates their allocation to the actual malfunction. Example: monitoring the rotational speed of the motor using an external speed monitor.

The "External Fault" function block consists of:

- two plugs (1 plug for setting, 1 plug for resetting)
- one "Event external fault" socket. It is set if a signal is pending at the input.

The following are available:

- four "External Faults 1 to 4" function blocks for the pro C and pro S basic units
- six "External faults 1 to 6" function blocks for the SIMOCODE pro V basic units

Schematic

The following schematic shows the "External Fault" function blocks:

Figure 4-78 "External Fault" function blocks

Special reset options:

A specific reset input is also available in addition to the other reset options (remote reset, Test / Reset buttons, OFF command reset). Furthermore, Auto-Reset can also be activated. See table below.

Settings

Table 4-72 "External Fault" settings

External fault 1 to 6	Description
Input	Activation of the "External Fault" function block by the monitored signal (any sockets, e.g. device inputs, communication bus control bits, etc.)
Туре	Specification of the input logic:
	NO contact (1-active) (default)
	NC contact (0-active)
Active status	Specify in which motor operating state the external fault is to be evaluated:
	 Always (default): Always evaluate, regardless of whether the motor is running or at a standstill
	Only when motor on: Evaluation only if motor is switched ON.
Response	Specification of the response to an external fault when activated via the input (see the following table and Chapter Important notes (Page 7)).
Reset	Acknowledge the "External fault" fault via any signal (any sockets, e.g. device inputs, communication bus control bits, etc.)
Reset also by	Specification of further (common) acknowledgement options using additional reset types:
	• Test/Reset buttons on the basic unit and the operator panel or, in the case of the operator panel with display, via the menu (panel reset) (default)
	Remote reset: Acknowledgment via reset 1 to 3, DPV1, "Reset" command (default)
	 Auto reset: The fault resets itself after the cause has been eliminated (after removal of the activation signal)
	OFF command reset: "OFF" control command, resets the fault
Marking ¹⁾	No parameters. Optional marking for designating the event, e.g. "Speed >," e.g. with SIMOCODE ES. Range: maximum 10 characters.

Note

Changing the marking of all Ethernet and PROFINET connections

Each change to the marking requires that the communication interface be restarted when the web server is active.

A new start interrupts all Ethernet and PROFINET links and reestablishes them afterward.

"External fault" response

Table 4-73 "External fault" response

Response	External fault
trip	Х
warn	X
signal	X (d)
deactivated	_

4.7.5 Operational Protection Off (OPO)

4.7.5.1 Response to positioner control function

Description of Operational Protection Off (OPO)

The "Operational Protection Off (OPO)" function block returns the positioner to a safe position. To do this, the input (plug) must be connected to an appropriate socket (e.g. device inputs, communication bus control bits, etc.).

The "Operational Protection Off" function block consists of

- one plug
- one "Status OPO" socket. It is set if a signal is pending at the input.
- one "Fault OPO Fault" socket. It is set when the respective, safe end position has been reached.

In total, one "Operational Protection Off (OPO)" function block is available for the pro V basic units.

The following table shows the basic operating principle:

Table 4-74 Basic operating principle of Operational Protection Off (OPO) for the "Positioner" control function

OPO	Initial position when OPO is pending				
	Positioner is open	Positioner opens	Positioner stop/OFF	Positioner closes	Positioner is closed
		Reaction	n to OPO		
Parameterized response	Fault reset: With close command	Fault reset: With close command	Fault reset: With close command	_	_
"Positioner closes"	Positioner closes	Positioner closes	Positioner closes	Positioner closes	
Parameterized "Positioner opens"	_		Fault reset: With open command	Fault reset: With open command	Fault reset: With open command
response		◄ Positioner opens	◄ Positioner opens	◄ Positioner opens	◄ Positioner opens

Schematic

The following schematic shows the "Operational Protection Off (OPO)" function block:

Figure 4-79 "Operational Protection Off (OPO)" function block

Parameters

4.7 Standard functions

Settings

Table 4-75 Operational Protection Off settings

Operational Protection Off (OPO)	Description
Input	Activation of the "Operational Protection Off" function block by the monitored signal (any sockets, e.g. device inputs, etc.)
Positioner response	Specification of the response for the "Positioner" control function when activated via the input:
	• CLOSE: Positioner runs to the end position in the "CLOSED" direction (default).
	OPEN: Positioner moves to the "Open" end position
Туре	Specification of the input logic
	NO contact (1-active) (default)
	NC contact (0-active)

Safety guidelines

Note

A "Fault - Operational Protection Off (OPO)" fault message is not generated if the "OPO" command attempts to run the positioner to the end position if it is approaching or has already reached this end position.

Note

No other control command (counter command or stop command) is performed while "Operational protection Off (OPO)" is active.

Note

The "Fault - Operational protection Off (OPO)" fault message must be acknowledged by the open or closed control command, depending on the present "OPO" end position.

Note

Acknowledgment is performed even if the desired end position has not yet been reached.

Note

The fault message is available as diagnosis via the communication bus.

4.7.5.2 Response to other control functions

For other control functions, the following scenarios can be differentiated between for OPO:

- Motor in operation: The motor is switched Off with a "Fault Operational Protection Off (OPO)" fault.
- The motor is off. Initially no fault. The "Fault Operational Protection Off (OPO)" fault only occurs when an "ON command" is issued.

4.7.6 Power failure monitoring (UVO)

Description

The "Power Failure Monitoring (UVO)" function block is activated via the plug. This is performed via an external voltage relay that is connected to the function block via the binary inputs of SIMOCODE pro.

Sequence (see timing charts below):

- 1. All contactors (QE) are disconnected immediately after the monitoring relay has been operated/the input has been activated (UVO).
- If the voltage is restored within the "power failure time", the motor will be reset to its previous state. This can either take place immediately or with a time delay (restart time delay).
- 3. If the "power failure time" elapses before the voltage returns, the device signals a fault (UVO fault).

Prerequisite: The SIMOCODE pro control voltage is buffered and not interrupted.

In total, one "Power Failure Monitoring" function block is available for the pro V basic units.

Schematic

The following schematic shows the "Power Failure Monitoring (UVO)" function block:

Figure 4-80 "Power Failure Monitoring (UVO)" function block

Figure 4-81 Power failure monitoring (UVO) sequence charts

Settings

Power failure monitoring (UVO)	Description	
Input (activation)	Activation of the "Power Failure Monitoring (UVO)" function block by the monitored signal (any socket, e.g. device inputs, communication bus control bits, etc.)	
Туре	Specification of the type of power failure monitoring:	
	Deactivated (default setting)	
	• No interruption of device power supply. The SIMOCODE pro control supply voltage is maintained. The failure of the line voltage must be detected, for example, by a separate voltage relay.	
Power failure time	Time that starts when the power fails. If the line voltage is restored within the power failure time, all drives which were running prior to the power failure are reconnected automatically. If the line voltage is not restored within the power failure time, the drives remain disconnected and the "Fault - Power failure (UVO)" message is generated. Once the line voltage has been restored, this fault message can be acknowledged with "Reset".	
	Range:	
	• 0 to 25.5 s in increments of 0.1 s	
	• 26 to 255 s, in increments of 1 s	
	• 256 to 2550 s in increments of 10 s.	
Restart time delay	The restart time delay can be set so that not all motors restart simultaneously. (Line voltage would otherwise dip again.)	
	Range: 0 to 255 s (default: 0 s)	

4.7.7 Emergency start

Description

Emergency start deletes the thermal memory from SIMOCODE pro each time it is activated. This allows the motor to be immediately restarted after an overload trip. This function can be used to:

- enable an immediate reset and restart after an overload trip
- delete the thermal memory (motor model) during operation, if required.

NOTICE

Thermal overload of the motor possible!

If emergency starts are performed too frequently this may result in thermal overloading of the motor!

Since the emergency start is "edge-triggered", this function cannot permanently affect the thermal motor model. An emergency start is carried out as follows:

• Using the plug of the function block. To do this, the input (plug) of the function block must be connected to any socket (e.g. device inputs, communication bus control bits, etc.).

The "Emergency Start" function block consists of:

- one plug
- one "Status emergency start executed" socket. It is set when an emergency start has been executed.

Overall, there is one "Emergency start" function block available.

Schematic

The following schematic shows the "Emergency Start" function block:

 The "Emergency start executed" signal is triggered by the edge (input) and reset when the current flows.

Figure 4-82 Emergency Start function block

Settings

Table 4-77 Emergency start settings

Emergency start	Description
Input	Activation of the "Emergency Start" function block by any signal (any sockets, e.g. device inputs, communication bus control bits, etc.).

4.7.8 Safety-related tripping

Description

Note

Please note that the information made available for further processing is in the form of non-safety-related signals.

Note

Please note that the safety-related tripping function block does not itself represent a safety-related function.

The safety function of the DM-F Local is determined exclusively by the setting of the DIP switch on the module.

The safety function of the DM-F PROFIsafe is determined by the fail-safe program in the F-CPU.

Further information: See Manual SIMOCODE pro fail-safe digital modules (https://support.automation.siemens.com/WW/view/en/50564852).

The DM-F Local Safety-related tripping function block consists of 3 sockets:

- Event DM-F LOCAL ok: The DM-F LOCAL is ON.
- Event safety-related tripping: A safety-related tripping has been performed.
- Status enabling circuit closed: The enabling circuit is closed.

The DM-F PROFIsafe Safety-related tripping function block consists of 3 sockets:

- Event PROFIsafe active: Fail-safe communication between the F-CPU and the DM-F PROFIsafe is active.
- Event safety-related tripping: A safety-related tripping has been performed.
- Status enabling circuit closed: The enabling circuit is closed.

There is 1 "Safety-related tripping" function block each for SAFETY (Local) and PROFIsafe on the SIMOCODE pro V basic unit.

Schematic

The following schematic shows the "Safety-related tripping" function block:

Figure 4-83 "Safe Tripping" function block

SET / RESET button on DM-F Local

Figure 4-84 SET / RESET button

See ManualSIMOCODE pro fail-safe digital modules (https://support.automation.siemens.com/WW/view/en/50564852).

Automatic starting after power failure. Risk of death or serious injury.

In the case of automatic starting after a power failure, the enabling circuits are connected without pressing the Start button.

Settings of the DIP switches on the DM-F Local

Switch setting		OFF / ON
1		With /without cross-circuit detection
2		1 NC + 1 NO evaluation / 2 NC evaluation
3	>₽	2x 1-channel / 1x 2-channel
4		Debounce time for sensor inputs 50 ms / 10 ms
5		Sensor input automatic start / monitored start
6		Cascading input automatic start / monitored start
7		With / without startup testing
8		With automatic starting / without automatic starting after power failure

Table 4- 78 Settings of the DIP switches (DM-F Local)

Note

The target setting of the DIP switches in the SIMOCODE ES user interface (can be made using the mouse pointer) is transferred to the basic unit on download but does not affect the function of the DM-F Local digital module. The desired function is thus saved as soon as the parameterization has been created.

You must set the effective parameterization via the DIP switches on the front of the DM-F Local (see table below and/or the manual "SIMOCODE pro fail-safe digital modules (<u>https://support.automation.siemens.com/WW/view/en/50564852</u>)"). The basic unit compares the target setting (from the download) with the actual setting on the DM-F Local. If these differ, "Configuration deviation" is output!

Description of the settings of the DIP switches on the DM-F Local

DIP switches (DM-F Local)	Description		
With/without cross-circuit detection	Cross-circuit detection is only possible with floating sensors. The sensors must be connected between T1 - Y12, Y33 and T2 - Y22, Y34. The device anticipates the T1 terminal test signal at the terminals Y12 and Y33, and the T2 terminal test signal at the terminals Y22 and Y34. The device detects a sensor fault if the signal at the Y12, Y33 or the Y22, Y34 terminals is not identical to the test signals T1, T2.		
	Cross-circuit detection must be deactivated if electronic sensors such as light arrays or laser scanners are connected. The DM-F Local now no longer monitors the sensor inputs for cross-circuit detection. Usually, the outputs of safety sensors (OSSD) are already monitored for cross-circuits in the sensor itself.		
	If "Without cross-circuit detection" is set on the device, the test outputs T1, T2 are deactivated and may no longer be connected. At the Y12, Y22, Y33, and Y34 inputs, the DM-F LOCAL expects a +24 V DC signal from the same current source as the one from which the device receives its power supply (possible only in the case of DM-F LOCAL-1AB00) or from T3 (static +24 V DC).		
	In the case of the DM-F LOCAL-1AU00 device version, it is imperative to connect the T3 terminal to the floating sensor contacts due to the electrical isolation between the input circuit and the sensor power supply.		
1 NC + 1 NO evaluation / 2 NC evaluation	In addition to 2-channel connection of the same types of sensor contacts (NC / NC), sensors with opposite types of contacts (NC / NO), as are frequently used for magnetically-operated switches, can also be evaluated. In this case, ensure that the NC contact is connected to Y12 and the NO contact to Y22.		
2x 1-channel / 1x 2-channel	 2 sensors with one contact each (2x 1-channel) (NC / NC). It is expected that both sensors are AND-connected. Simultaneity is not monitored. 		
	 1 sensor with two contacts each (1x 2-channel) (NC / NC). The system expects both contacts to be simultaneously open. 		
Debounce time for sensor inputs	Any change in the sensor signal during the debounce time is not evaluated.		
50 ms / 10 ms	Debounce time 50 ms: Changes in the switch position of strongly bouncing contacts are suppressed (e.g. position switches on heavy protective doors).		
	 Debounce time 10 ms: The shorter debounce time permits faster tripping in the case of bounce-free sensors (e.g. light arrays). 		
Sensor input automatic start / monitored start	 Automatic start: The enabling circuits are switched to the operative position as soon as the starting condition at sensor inputs Y12, Y22, Y34 and terminal 1 have been fulfilled. The start button connection terminal Y33 is not queried. 		
	 Monitored start: The enabling circuits are switched to the operative position, as soon as the starting condition at sensor inputs Y12, Y22, Y34 and terminal 1 have been fulfilled and the start button at terminal Y33 has subsequently been actuated (start with the falling edge). 		
Cascading input automatic start / monitored start	 Automatic start: The enabling circuits are switched to the active position as soon as the switch-on condition at cascading input 1 is satisfied, i.e. as soon as a static +24 V DC signal is present (e.g. from T3). 		
	 Monitored start: The enabling circuits are switched to the operative position as soon as the starting condition at cascading input 1 has been fulfilled, i.e. as soon as a static +24 V DC signal is present (e.g. from T3), and the start button at terminal Y33 has subsequently been actuated (start with the falling edge). 		

Table 4-79 Description of the settings of the DIP switches, DM-F Local

DIP switches (DM-F Local)	Description	
With / without startup testing	After a power failure, startup testing requires that the sensors at Y12 and Y22 are actuated once by the system operator.	
With automatic starting / without automatic starting after power failure	The DM-F Local can be parameterized in such a way that the enabling circuits automatically switch to the operative position after a power failure, i.e. without actuation of the start button Y33.	
	Prerequisites:	
	• Y12, Y22 or the cascading input 1 are set to "monitored start."	
	 The starting condition at the sensor inputs and at the cascading input has been fulfilled. 	
	 Valid actuation of the start button prior to the power failure, i.e. the enabling circuits were in the operative position. 	

Settings of the DIP switches (DM-F PROFIsafe)

Before commissioning the DM-F PROFIsafe, set the PROFIsafe address as follows:

Switch setting		Value
1 = 2 ⁰		1
2 = 2 ¹		2
3 = 2 ²		4
4 = 2 ³		8
5 = 2 ⁴		16
6 = 2 ⁵		32
7 = 2 ⁶		64
8 = 2 ⁷	o	128
9 = 2 ⁸		256
10 = 2 ⁹	∞	512
	 0	

 Table 4- 80
 Settings of the DIP switches (DM-F PROFIsafe)

If 1 DIP switch is at ON, the respective value is active. If more than 1 DIP switch is at ON, the respective values must be added.

- Briefly press the SET / RESET button. LEDs 1 to 10 indicate the current PROFIsafe address.
- Setting the PROFIsafe address:
 - Switch off the supply voltage
 - Set the DIP switch configuration
 - Switch on the supply voltage again.

Figure 4-85 SET / RESET button

Parameters

4.7 Standard functions

"Safety-related tripping" response

Here, you set the SIMOCODE pro response to safety-related tripping via DM-F Local or DM-F PROFIsafe.

Note

The response of the modules is not influenced by this setting. If the conditions for safety-related disconnection are met, the enable circuits are always disabled!

Table 4-81 "Safety-related tripping" response

Response	Safety-related tripping	
trip	Х	
deactivated	X (d)	
signal	Х	
warn	Х	

Note

In the event that the option "DM-F LOCAL / Separate PROFIsafe function from control function" has been activated under "Motor control > Control function > Operating mode," only "deactivated", "signal," or "warn" can be set as the response, not "trip."

"Safety-related tripping" reset

Here, you can select manual or automatic acknowledgment of SIMOCODE pro faults caused by safety-related tripping.

Reset:

Manual (default), Auto

4.7.9 Watchdog (Bus monitoring, PLC/PCS monitoring)

Description

The "Watchdog" function block monitors communication with the PLC via communication bus, as well as the operating state of the PLC in the "Remote" operating mode.

Bus monitoring

With this type of monitoring, the "Fault - bus" fault is generated if

- "Bus monitoring" is active.
- In the "Remote" operating mode (mode selector S1 = 1 and S2 = 1), cyclic data transfer between the PLC and SIMOCODE pro is interrupted, e.g. by interruption of the bus connection.
- "Status Bus o.k." can always be evaluated. If SIMOCODE pro is cyclically exchanging data with the PLC, "Status Bus o.k." is set to "1".

PLC / PCS monitoring

With this type of monitoring, the "Fault - PLC/PCS" message is generated if

- "PLC / PCS monitoring" is active.
- For example, the PROFIBUS DP switches to the "CLEAR" status or the PROFINET switches to the "Hold/Stop" status when in the "Remote" operating mode (mode selector S1=1 and S2=1).

The "Status - PLC / PCS in Run" can always be evaluated. If the PROFIBUS DP is in the "CLEAR" state, for example, "Status - PLC/PCS in Run" is set to "0".

If the "PLC/PCS monitoring - input" is connected primarily to the "Cyclic receive - bit 0.7" bit, the status of the PLC is deduced from this bit only.

Schematic

Figure 4-86 "Watchdog (PLC / PCS Monitoring)" function block

NOTICE

PROFIBUS DP

"Bus monitoring" and "PLC / PCS monitoring" can only be effective if the DP slave watchdog function is activated in the DP master system.

Settings

Table 4-82 Watchdog settings

Watchdog	Description	
PLC / PCS monitoring - Input	Activates the "Watchdog" function block using the monitored signal (any sockets, e.g. the communication bus control bits, etc.)	
Bus monitoring	 Activated (default): If a bus fault occurs, the "Fault - Bus" fault message is generated and must be acknowledged 	
	 Deactivated: No fault message; however, the "Status - Bus o.k." information can be evaluated at any time. 	
PLC / PCS monitoring	 Activated (default): If a bus fault occurs, the "Fault - PLC/PCS" fault message is generated and must be acknowledged. 	
	 Deactivated: No fault message; however, the "Status - SPS/PLS in Run" information can be evaluated at any time. 	
Bus/PLC fault - reset	You can select whether faults are to be acknowledged automatically or manually.	
	Range: Manual / Auto (default: manual).	

"Bus fault" / "PLC / PCS fault" response

Table 4- 83 "Bus fault" / "PLC / PCS fault" response

Response	Bus fault	PLC/PCS fault
Fault	X (d)	X (d)
warn	-	-
signal	-	-
deactivated	Х	Х
4.7.10 Timestamping

Description

SIMOCODE pro V can timestamp up to eight digital signals with high temporal precision (10 ms). In the process, every change in the state of the digital signals will be recorded.

Possible areas of application are:

- Precise chronological recording of faults in a procedural system
- Analysis of system-wide interrelationships
- Recording and signaling of time-critical signal changes

Requirements

To use SIMOCODE pro V time stamping, the DP master being used must support time synchronization functions via PROFIBUS (e.g. DP master connections for SIMATIC S7-400), or a master clock must be used (e.g. SICLOCK).

Process in STEP 7

Time-of-day synchronization for SIMOCODE pro V is activated in STEP 7 HW Config in the slave properties under "Time Synchronization".

Note

The set synchronization interval must correspond to the configuration of the clock master.

For SIMOCODE pro, transmission of time stamped information is analogous to transmission with SIMATIC S7 IM 153-2. Therefore, the "FB 62 TIMESTMP" function block can be used for further processing of time stamped information in the CPU, to transmit time stamped messages from the "Standard Library \rightarrow Miscellaneous Blocks" library.

Note

The "LADDR" parameter contains the diagnostic address of the DP slave from STEP 7 HW Config. In DP mode "DPV1" of the DP master – integrated via OM SIMOCODE pro – LADDR2 contains the diagnostic address of slot 2 of SIMOCODE pro. For all other configurations, LADDR2 will contain the same address as LADDR.

In contrast to the STEP7 online help for the FB62, when integrating via GSD, the slot number of the module is transmitted with Slot 1 for signal messages, and with Slot 0 for special messages.

You will find further information about the FB 62 in the STEP7 online help.

4.7 Standard functions

Schematic

The following schematic shows the "Timestamping" function block:

Figure 4-87 "Timestamping" function block

The "Timestamping" function block comprises eight "Timestamping - input 0 to input 7" plugs.

Overall, there is one "Timestamping" function block available.

4.8.1 Overview of logic modules

Description

Freely programmable logic modules are function blocks that process input signals and supply binary or analog output signals according to their internal logic components. Logic modules can contain:

- Plugs
- An internal logic component
- Sockets
- Settings, e.g. the time for a timer.

Schematic

The following schematic shows a general representation of a logic module:

Figure 4-88 General representation of a logic module

Scope and application

You can use the logic modules to carry out additional functions for your application. These can be used, for example, to implement logical operations, time relay functions and counter functions. Depending on the device series, the system provides several logic modules:

Table 4- 84	Freely-programmab	le logic modules
-------------	-------------------	------------------

Logic module			SIMOC	ODE		
	pro C	pro S	pro V PB	pro V MB RTU	pro V PN	pro V EIP
Truth tables 3 inputs / 1 output	3	4	6	6	8	8
Truth table 2 inputs / 1 output	—	2	2	2	2	2
Truth tables 5 inputs / 2 outputs	—	_	1	1	1	1
Timer	2	2	4	4	6	6
Counter	2	2	4	4	6	6
Signal conditioning	2	4	4	4	6	6
Non-volatile elements	2	2	4	4	4	4
Flashing	3	3	3	3	3	3
Flicker	3	3	3	3	3	3
Limit monitor	—	_	4	4	6	6
Calculation modules (calculators)	—	_	2 ¹⁾	2	4	4
Analog multiplexer	—	—	—	—	1	1
Pulse width modulator	_	_	_	_	1	1
1) Only for basic unit SIMOCODE pro V PB	from version '	*E03*				

4.8.2 Truth table for 3I / 1O

Description

The truth table for 3I / 1O consists of

- Three plugs
- one logic component
- one socket

You can choose which of the eight possible input conditions an output signal should be generated for.

The following are available:

- three truth tables (1 to 3) for the SIMOCODE pro C basic unit
- four truth tables (1 to 4) for the SIMOCODE pro S basic unit
- six truth tables (1 to 6) for the SIMOCODE pro V PB and pro V MB RTU basic units
- eight truth tables (1 to 6, 10, 11) for the SIMOCODE pro V PN and pro V EtherNet IP basic units.

Schematic

The following schematic shows the "Truth Table for 3I / 10" logic modules:

Figure 4-89 "Truth Table for 3I / 10" logic modules

4.8 Logic modules

Example

You want to implement the following circuit:

Circuit:	Truth table, input conditions colored in gray:			
	S1= Input 1	S2= Input 2	S3= Input 3	Q1= Output
$\left(\begin{array}{c} S1 \\ \end{array} \right) \left(\begin{array}{c} S2 \\ \end{array} \right)$	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
Q1 switches with:	1	1	0	0
(S1 or S2) and S3 or S1 and S2 and S3	1	1	1	1

Figure 4-90 Example of a truth table

Circuit and parameterization

Settings

Table 4-85 Settings for truth table 3I/10

Truth table for 3I / 1O	Description
Inputs 1 to 3	Activation of the truth table by any signal (any sockets, e.g. device inputs, communication bus control bits, etc.)

4.8.3 Truth table for 2I / 1O

Description

The truth table for 2I / 1O consists of:

- Two plugs
- one logic component
- one socket.

You can choose which of the four possible input conditions an output signal should be generated for.

In total, two truth tables (7 to 8) are available.

Schematic

The following schematic shows the "Truth Table for 2I / 10" logic modules:

Figure 4-92 "Truth Table for 2I / 1O" logic modules

Example

You want to implement the following circuit:

Circuit:

Truth table, input conditions colored in gray:

2	S1= Input 1	S2= Input 2	Q1= Output
	0	0	0
	0	1	1
	1	0	1
Q1 switches with:	1	1	1

Figure 4-93 Example of truth table 2I / 1O

Settings

Table 4-86 Settings for truth table 2I/10

Truth table for 2I / 10	Description
Inputs 1 to 2	Activation of the truth table by any signal (any sockets, e.g. device inputs, communication bus control bits, etc.)

4.8.4 Truth table for 5I / 2O

Description

The truth table for 5I / 2O consists of:

- five plugs
- one logic component
- Two sockets.

You can choose which of the 32 possible input conditions a maximum of two output signals should be generated for.

In total, one truth table 9 is available for the SIMOCODE pro V basic units.

Schematic

The following schematic shows the "Truth Table for 5I / 2O" logic modules:

Figure 4-94 "Truth Table for 5I / 2O" logic modules

Settings

Table 4-87 Settings for truth table for 5I / 2O

Truth table 9 (5I / 2O)	Description
Input 1 to 5	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)

4.8.5 Counter

Description

Counters are integrated in the SIMOCODE pro system. These are activated via the plugs "+" or "-".

The counter output switches to "1" when the preset limit is reached. The counter is reset with "Reset".

The current actual value is available as a socket for further internal processing and can also be transmitted to the automation system.

- Plug +: Increases the actual value by 1 (maximum: limit).
- Plug -: Reduces the actual value by 1 (minimum: 0).
- Reset: Resets the actual value to 0.

The counter consists of

- three plugs (input +, input and reset)
- one logic component
- one socket
- One "Actual value" analog socket with the current value in the range between 0 and the limit. The value is retained even in the event of a power failure.

The following are available:

- two counters (1 to 2) for the SIMOCODE pro C and pro S basic units
- four counters (1 to 4) for the SIMOCODE pro V PB and pro V MB RTU basic units
- six counters (1 to 6) for the SIMOCODE pro V PN and pro V EIP basic units.

Schematic

The following schematic shows the "Counters" logic modules:

Figure 4-95 "Counter" logic modules

Note

The time between the events to be counted depends on

- The input delay
- The device cycle time.

Note

The actual value remains the same

- During parameterization or failure of the supply voltage
- If there are simultaneous input signals at input + and input -.

Note

The output is always 0 if a reset is pending.

Settings

Table 4-88 Counter settings

Counters 1 to 6	Description
Input +	Increments actual value by 1
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Input -	Decrements the actual value by 1.
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Reset	Reset the actual value to 0 (count value and output).
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Limit	Value that can be reached when counting and at which the counter issues an output signal.
	Range: 0 to 65535 (default: 0)

4.8.6 Timer

Description

The timer consists of:

- two plugs (input and reset)
- one socket
- one "Actual value" analog socket with the actual value.

The current actual value is available as a socket for further internal processing and can also be transmitted to the automation system.

If an input signal is pending, the timer issues an output signal according to the chosen timer type:

- With closing delay
- With closing delay with memory
- With OFF delay
- With fleeting closing

The following are available:

- two timers (1 to 2) for the SIMOCODE pro C and SIMOCODE pro S basic units
- four timers (1 to 4) for the SIMOCODE pro V PB and pro V MB RTU basic units
- six timers (1 to 6) for the SIMOCODE pro V PN and pro V EIP basic units.

Schematic

The following schematic shows the "Timers" logic modules:

Note

The output is always 0 if a reset is pending.

Note

The response of the plugs of all timers (input, reset) has been completely changed to levelactive for the SIMOCODE pro C basic unit from version *E05* and higher and the SIMOCODE pro V PB basic unit from version *E03* and higher. Use of an unchanged parameter file utilizing integrated timers may thus result in a different response if such basic units are used. For example, if "Fixed level - '1"' is set at the timer input, the timer function is automatically restarted after the timer reset occurs. However, in timers with the parameterized type = "Fleeting closing" there is no change in the response.

4.8 Logic modules

Output response of the timer

For

- SIMOCODE pro C basic unit up to version *E05*
- SIMOCODE pro V PB basic unit up to version *E03*

With closing delay:

Figure 4-97 Output response of timers (SIMOCODE pro C basic unit before version *E05* and SIMOCODE pro V PB basic unit before version *E03*)

Output response of the timer

For

- SIMOCODE pro C basic unit from version *E05*
- SIMOCODE pro V PB basic unit from version *E03*
- SIMOCODE pro S basic unit
- all other SIMOCODE pro V basic units

With closing delay:

Timer settings

Table 4- 89 Timer settings

Timers 1 to 6	Description
Input	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Reset	Resetting the actual value to 0.
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Туре	Different output responses
	Range: With closing delay (default), closing delay with memory, with OFF delay, with fleeting closing
Value	Time during which the timer provides an output signal when activated, depending on the output response (type).
	Range: 0 to 6553.5, unit 100 ms (default: 0)

4.8.7 Signal conditioner

Description

If an input signal is pending, the signal conditioning issues an output signal according to the selected signal conditioning type:

- Non-inverting
- Inverting
- Edge rising with memory
- Edge falling with memory

You can set the output response.

The signal conditioning consists of:

- two plugs (input and reset)
- one logic component
- one socket

The following are available:

- two signal conditionings (1 to 2) for the SIMOCODE pro C basic unit
- four signal conditionings (1 to 4) for the SIMOCODE pro S, pro V PB and pro V MB RTU basic units
- six signal conditionings (1 to 6) for the SIMOCODE pro V PN and pro V EIP basic units.

Schematic

The following schematic shows the "Signal conditioning" logic modules:

Figure 4-98 "Signal conditioning" logic modules

Note

The output is always 0 if a reset is pending.

4.8 Logic modules

Types of signals / output responses

Figure 4-99 Types of signals/output responses of the signal conditioning

NOR function

You can implement a NOR function with the "inverting" type of signal:

Table 4- 90	NOR function

Input	Reset	Output	Schematic
0	0	1	Eingang Ausgang
1	0	0	
0	1	0	
1	1	0	NOR switch

Settings

Table 4-91 Signal conditioning settings

Signal conditioning 1 to 6	Description
Input	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Reset	Resetting the signal conditioning to 0.
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Туре	Different output responses.
	Range: Non-inverting (default), inverting, edge rising with memory, edge falling with memory

4.8.8 Non-volatile elements

Description

Non-volatile elements behave like signal conditioning. However, these output signals are retained after a power supply failure.

If an input signal is pending, the non-volatile element issues an output signal according to the selected type:

- Non-inverting
- Inverting
- Edge rising with memory
- Edge falling with memory

You can set the output response.

The non-volatile element consists of

- two plugs (input and reset)
- one logic component
- one socket

The following are available:

- two non-volatile elements (1 to 2) for the SIMOCODE pro C and SIMOCODE pro S basic units
- four non-volatile elements 1 to 4 for the SIMOCODE pro V basic units

Schematic

The following schematic shows the "Non-volatile element" logic modules:

Figure 4-100 "Non-volatile Element" logic modules

Note

The output is always 0 if a reset is pending.

Types of signals / output responses

Figure 4-101 Types of signals / output responses of non-volatile elements

4.8 Logic modules

NOR function

You can implement a NOR function with the "inverting" type of signal:

Table 4- 92	NOR function

Input	Reset	Output	Schematic
0	0	1	Eingang Ausgang
1	0	0	
0	1	0	
1	1	0	

Settings

Table 4- 93 Non-volatile element settings

Non-volatile elements 1 to 4	Description
Input	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Reset	Resetting the signal conditioning to 0.
	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Туре	Different output responses
	Range: Non-inverting (default), inverting, edge rising with memory, edge falling with memory

4.8.9 Flashing

Description

If an input signal is pending at its plug, the "Flashing" logic module issues a signal to its socket, which alternates between binary 0 and 1 at a fixed frequency of 1 Hz. You can use this to make the LEDs on the operator panel flash, for example. The logic module consists of:

- one plug
- one logic component
- one socket

In total, 3 "Flashing" logic modules (1 to 3), are available.

Schematic

The following schematic shows the "Flashing" logic modules:

Figure 4-102 "Flashing" logic modules

Settings

Table 4- 94 Flashing settings

Flashing 1 to 3	Description
Input	Activation by any signal (any sockets, e.g. device inputs, events, status, etc.)

4.8.10 Flickering

Description

You can use the "Flicker" logic modules to assign the "Flicker" function to the operator-panel LEDs, for example.

The "Flicker" function block provides an output signal with a frequency of 4 Hz when an input signal is present.

The function block consists of:

- one plug
- one logic component
- one socket

A total of three logic modules, "Flicker" (1 to 3), are available.

Schematic

The following schematic shows the "Flicker" logic modules:

Settings

Table 4- 95 Flicker settings

Flicker 1 to 3	Description
Input	Activation by any signal (any sockets, e.g. events, etc.)

4.8.11 Limit monitor

Description

With the limit monitor, any analog values (2 bytes / 1 word) can be monitored for limit overshooting or limit undershooting The limit monitor issues the "Limit" signal at its socket. In addition, limit monitors can be "marked" according to their function.

Example: Monitoring the individual sensor measuring circuits of the temperature module (Temperature 1 to 3) for overtemperature.

The limit monitor consists of:

- one analog plug
- one logic component
- one socket

The following are available:

- four limit monitors (1 to 4) for the SIMOCODE pro V PB and pro V MB RTU basic units
- six limit monitors (1 to 6) for the SIMOCODE pro V PN and pro V EIP basic units

Schematic

The following schematic shows the "Limit monitor" logic modules:

Figure 4-104 "Limit Monitor" logic modules

4.8 Logic modules

Response

Table 4-96 Limit monitor response

Response	Limits 1 to 6
trip	
warn	_
signal	X (d)
deactivated	_
delay	0 to 25.5 s (default: 0.5 s)

See also "Tables of responses of SIMOCODE pro" in Chapter Important notes (Page 7).

Functional principle

The limit signal issued depends on:

- the operating state of the motor
- the TPF function
- the parameterized "active status":
 - ON
 - ON+
 - RUN
 - RUN+

The following display shows a flow chart with the different "active status" parameters.

¹⁾ TPF: There is test position feedback, the motor feeder is in the test position, i.e. its main circuit is isolated from the network. However, the control voltage is connected.

Figure 4-105 Active status of limit monitor

Settings

Table 4- 97	Limit	monitor	settings
-------------	-------	---------	----------

Limit monitor	Description
Input	Analog plug of the limit monitor for linking to the analog value to be monitored (2 bytes), e.g. maximum current I_max, remaining cooling down period, actual value of timers, etc.
Туре	Specifies if the limit has to be monitored for overshooting (default) or undershooting.
Active status	Determines in which motor operating state the limit monitor is to be evaluated:
	• ON, i.e. always (default) evaluate, regardless of whether or not the motor is running
	 ON+, i.e. always evaluate, regardless of whether or not the motor is running Exception: "TPF", i.e. motor feeder is in test position
	• RUN, i.e. evaluate only if the motor is in the ON state and not in the test position (TPF).
	 RUN+, i.e. evaluate only if the motor is running and the startup procedure is finished (i.e. the "Start active" message is no longer active) and there is no test position feedback (TPF); example: Cos phi monitoring
Limit	Monitor response value. The return value is always determined by the "Limit monitor - Delay" parameter.
	Range: 0 to 65535 (default: 0)
delay	Specifies the time period for which the limit must be constantly overshot before the "Event - Limit" output is set.
	Range: 0 to 25.5 s (default: 0.5 s)
Marking ¹⁾	No parameters. Optional marking for identifying the message, e.g. "Limit>"; range: max. 10 characters.

NOTICE

Changing the marking (PROFINET)

Each change to the marking requires that the communication interface be restarted when the web server is active. A new start interrupts all Ethernet and PROFINET links and reestablishes them afterward.

Note

When using limit monitors, always ensure that the correct range and unit are used for the analog values connected to the limit input. These always have a direct influence on the unit of the limit value to be set. The units and ranges of all relevant analog values can be found in chapters "Data record 94 - Measured values" and "Data record 95 - Service data/statistical data" in the manual SIMOCODE pro - Communication

(https://support.industry.siemens.com/cs/ww/en/view/109743960).

4.8 Logic modules

Table 4- 98 Examples of typical units and ranges in SIMOCODE pro

	Unit	Range
Temperatures (e.g. max. temperature)	1 K	0 - 65535
Operating hours	1 s	0 - 1193046
Motor stop time	1 h	0 - 65535
Active power	1 W	0 - 4294967295
Apparent power	1 VA	0 - 4294967295
Timer actual value	100 ms	0 - 65535
Currents (e.g. max. current I_max) 1 % of I _s 0 - 65535		0 - 65535
Analog module inputs		0 to 27648 (S7 format)

Thus, for example, a limit of 473 (K) must be parameterized for a limit monitor to monitor a maximum temperature of 200 °C.

4.8.12 Calculators (calculation modules) 1, 2

Description

The two logic modules "Calculator 1" and "Calculator 2" integrated in SIMOCODE pro V basic units are capable of the standard calculation modes and enable all analog values featured in SIMOCODE pro to be adapted, calculated, and converted, for example:

- Conversion of the measured temperatures from K (Kelvin) to °F or °C
- Conversion of the motor current from [%] to [A]
- Conversion of the 0/4 to 20mA signals of the analog module directly into fill levels, pressures, and flow rates.

The analog value (2 bytes / 1 word) present at the analog sockets is calculated using a defined formula and using freely-selectable parameters (numerators, denominators, operators, offsets). The result of the calculation is output as an analog value (2 bytes/1 word) at the analog socket of the logic module for further processing.

Each calculator consists of:

- one analog plug (Calculator 1) or two analog plugs (Calculator 2)
- one logic component
- one analog socket

Schematic

The following schematic shows the "Calculators" logic modules:

Figure 4-106 "Calculators" logic modules

Modes for calculator 2

The mode of the "Calculator 2" logic module can be changed via the "Operation mode" parameter:

- Operating mode 1: The analog value at input 1 is combined with the analog value at input 2 using a predefined formula and taking into account the specified parameters (numerators, denominators, offsets, operators). The result is available as an analog value (1 word / 2 bytes) at the output of the function block for further processing.
- Operating mode 2: The analog values at input 1 and input 2 are processed together as a double word. Input 1 represents the high word and input 2 the low word. The result is calculated by means of the formula defined for this operating mode using the specified parameters (numerators, denominators, offsets) and is output by the function block as 1 word /2 bytes. In mode 2, it is also possible to process double words (e.g. active power, apparent power) and to display them (2 bytes / 1 word).

Settings

Calculator	Description
Calculator 1 - Input	Any value (2 bytes / 1 word)°; Range: 0 - 65535
Calculator 1 - Output	Calculated value (2 bytes/1 word); range: 0 - 65535
Calculator 1 - Numerator	Range: -32766 to +32767, increment 1
Calculator 1 - Denominator	Range: 0 - 255, increment 1
Calculator 1 - Offset	Range: -32766 to +32767, increment 1
Calculator 2 - Input 1	Any value (2 bytes / 1 word); Range: 0 - 65535
Calculator 2 - Input 2	Any value (2 bytes / 1 word); Range: 0 - 65535
Calculator 2 - Output	Calculated value (2 bytes / 1 word); Range: 0 - 65535
Calculator 2 - Numerator 1	Range: -128 to +127, increment 1
Calculator 2 - Denominator 1	Range: 0 - 255, increment 1
Calculator 2 - Numerator 2 ¹⁾	Range: 0 - 255, increment 1
Calculator 2 - Denominator 2 ¹⁾	Range: -128 to +127, increment 1
Calculator 2 - Offset	Range: -2147483648 to +2147483647, increment 1
Calculator 2 - Operation mode	1 or 2
Calculator 2 - Operator ¹⁾	+, -, *, /
1) Only relevant for operating mo	ode = 1

Table 4- 99 Calculator settings

Calculator formulas

Figure 4-107 Calculator formulas

Examples of calculators

Example 1 - Calculator

Conversion of the maximum temperature of the temperature module from K to °C

Figure 4-108 Example 1 - Calculator

Example 2 - Calculator

Conversion of the maximum temperature of the temperature module from K to °F

Figure 4-109 Example 2 - Calculator

Example 3 - Calculator

Conversion of motor current I_max from % to A (e.g. current setting I_s = 3.36 A) (only possible for motors with one rotational speed)

Figure 4-110 Example 3 - Calculator

4.8.13 Calculators (calculation modules) 3, 4

Description

Using the "Calculator 3" and "Calculator 4" function blocks (for SIMOCODE pro V PN and pro V EIP basic units only), analog values can be processed according to the following arithmetic:

Output = Input 1 [Operator 1] Input 2 [Operator 2] Input 3 [Operator 3] Input 4.

You can connect the corresponding analog signals to the 4 inputs "Calculator 3/4 - Inputs 1 to 4". As operators "Calculator 3/4 - Operator 1 to 3," you can choose one of the four standard operators ("+", "-", "*," or "/").

With "Calculator 3/4 - Priority 1 to 3," you can specify the processing sequence (high, medium, low). You must clearly define a priority for each operator. The priority determines the processing sequence comparable to the placement of a term inside parentheses.

Example:

Output = I1 OP1 I2 OP2 I3 OP3 I4, where

- OP1 = "*"; Medium,
- OP2 = "+"; High,
- OP3 = "-"; Low

Associated equation: Output = (I1 * (I2 + I3)) - I4.

If you interconnect the input to the device-internal analog output data element "Output 1 - Fixed level", the input is assigned the constant "Const x" (x = 1 - 4). In this case, the respective edit field for the constant is activated. You can enter a value between 0 and 65535.

The "Calculator 3" and "Calculator 4" function blocks each consist of:

- Four analog plugs
- One analog socket
- Logic.

4.8 Logic modules

Schematic

The following schematic shows the "Calculator 3" and "Calculator 4" logic modules:

Figure 4-111 "Calculator 3" and "Calculator 4" function blocks

Settings Calculator 3, 4

Table 4- 100 Settings Calculator 3, 4

Calculators 3, 4	Description
Input	Any analog value
Output	Calculated analog value
Constant 1 to 4	Any analog value; range: 0 to 65535 (default: 0)
Operator 1 to 3	• "+": Addition
	"-": Subtraction
	"*": Multiplication
	• "/": Subtraction
Priority 1 to 3	Priority 1: high (default), medium, low
	Priority 2: medium (default), low
	Priority 3: Low

Formula Calculators 3, 4

Input 1 [Operator 1] Input 2 [Operator 2] Input 3 [Operator 3] Input 4 = Output

4.8.14 Analog multiplexer

Description

The analog multiplexer (for SIMOCODE pro V PN/pro V EIP basic units only) outputs one of 4 possible analog values at the inputs 1 to 4, depending on control signals S1 and S2.

If you interconnect the input to "Fixed level," the input is assigned the constant "Const x" (x = 1 ... 4). In this case, the respective edit field for the constant is activated. You can enter a value between 0 and 65535.

The "Analog Multiplexer" function block consists of:

- two digital plugs (control signal 1 and 2)
- Four analog plugs (Input 1 to 4)
- One analog socket
- Logic.

Schematic

The following schematic shows the Analog Multiplexer logic module:

	Analog Multiple	xer	
-	Control function S1	Output	-C
-	Control function S2		
-	Input 1		
_	Input 2		
-	Input 3		
-	Input 4		
0 -	Constant 1		
0 -	Constant 2		
0 -	Constant 3		
0 -	Constant 4		

Figure 4-112 Analog multiplexer function block

Settings Analog Multiplexer

Table 4- 101	Settings Analog	Multiplexer
	Octurings Analog	multiplexer

Analog multiplexer	Description
Control signal S1 to S4	Activation by any signal (any sockets, e.g. device inputs, control bits from the communication bus, etc.)
Input 1 to 4	Any analog value or "Fixed level"
Output	Output value according to panel (see below)
Constant 1 to 4	Any analog value; range: 0 to 65535

Table 4- 102 Analog multiplexer panel

S1	S2	Output
0	0	= Input 1
0	1	= Input 2
1	0	= Input 3
1	1	= Input 4

Analog multiplexer example

Pressing an operator panel button multiple times will output the maximum motor current and the three phase currents one after the other (e.g., via the output of the analog module):

Figure 4-113 Analog multiplexer example

- Pressing the OP button 1x: Phase current IL1
- Pressing the OP button 2x: Phase current IL2
- Pressing the OP button 3x: Phase current IL3
- Pressing the OP button 4x: Maximum motor current I_max.
4.8.15 Pulse width modulator

Description

The pulse width modulator (PWM) (for SIMOCODE pro V PN/pro V EIP basic units only) modulates the analog input value into a digital output signal "PWM Output" with a variable duty factor that is proportional to the analog input value.

If you interconnect the input to "Fixed value," the input is assigned the parameterized constant "Input (const)." In this case, the edit field for the constant is activated. You can enter a value between 0 and 65535.

The "Pulse Width Modulator" function block consists of:

- one analog plug (input)
- One digital socket (PWM output)
- Logic.

Schematic

Figure 4-114 "Pulse width modulator" function block

Settings Pulse Width Modulator

Table 4- 103	Settings Pu	ulse Width	Modulator
--------------	-------------	------------	-----------

Pulse width modulator	Description
Input	Activation by any analog signal or "Fixed value"
Constant input	Any constant; range: 0 to 65535 (default: 0)
Input Minimum	Any constant; range 0 to 65535 (default: 0)
Input Maximum	Any constant; range 1 to 65535 (default: 65535)
PWM duration	0.2 - 6553.5 s (default: 2)

Parameters

4.8 Logic modules

Pulse width modulator formulas

- Length of 1-signal = PWM period * (PWM Input PWM Input Minimum)/ (PWM Input Maximum - PWM Input Minimum)
- Length of 0-signal = PWM period Length of 1-signal.

Note

Signal duration

The shortest signal duration for 0 and 1 is 0.1 s in each case.

If a duration for the 1 signal that is shorter than 0.1 s results from calculation, the output will remain permanently 0, while for a duration for the 0 signal shorter than 0.1 s the output remains permanently 1.

Example - Pulse width modulator

A load will be switched on and off with a duration of 60 minutes, dependent on a measured value (e.g., temperature).

- If the measured value exceeds a maximum value of 50°°C (323 K), the load will be switched on permanently, and if it falls below 20°°C (293 K), it will be switched off permanently.
- If the measured value falls within the range between the minimum and maximum value, the On duration will be proportional to the measured value.

	TM1 inputs				Pulse width mod. (PWM)	
PT100	Sensor type		max. temperature		Input	output-
warn	Response to sensor	120	temperature 1 —	'293'	input minimum	
sors	Active sensors		temperature 2	'323'	input maximum	
			temperature 3 —	'3600 s'	duration	
			TM1 sensor fault —			
			TM1 out of range—			
	DuraLowHi lir	ation: 60 min (3 er limit: 20°C (2 nit: 50°C (323	293 K) K).			
	1					

- At 20°C (293 K): OFF
- At 30°C (303 K): 20 min ON and 40 min OFF
- At 40°C (313 K): 40 min ON and 20 min OFF
- At 50°C (323 K): ON.

Parameters

4.8 Logic modules

List of abbreviations

A.1 List of abbreviations

See SIMOCODE pro – System Manual (https://support.industry.siemens.com/cs/ww/en/view/109743957).

List of abbreviations

A.1 List of abbreviations

Index

...

"At operating temperature" state, 47 "Bus fault" / "PLC / PCS fault" response, 216 "DM1 / DM2 Outputs" settings, 164 "External fault" response, 202 "Internal ground-fault monitoring" response, 127 "Safety-related tripping" reset, 214 "Safety-related tripping" response, 214 "Sensor fault / Out of range" response, temperature module inputs, 184 "Trip level" response for monitoring current limits I >, 133 "Warning level" response for monitoring current limits I >, 133

0

0/4 - 20 mA monitoring, 143

Α

Acknowledgment of faults, 198 Active control stations of control functions, 117 Active power monitoring, 141 Active status motor operating hours monitoring, 148, 149 Active status trip level, warning level, 0/4 to 20 mA monitoring, 144 Active status trip level, warning level, active power monitoring, 142 Active status trip level, warning level, ground-fault monitoring, 130 Active status trip level, warning level, monitoring current limits I< (lower limit), 134 Active status trip level, warning level, monitoring current limits I> (upper limit), 133 Active status trip level, warning level, monitoring temperature, 153 Active status trip level, warning level, monitoring voltage, 137 Active status, number of starts monitoring, 150 Acyclic receive, 175, 188 Acyclic receive byte 0 (1, 2/3), 16 Acyclic send, 172 Acyclic send byte 0 (1), 16

Acyclic send data, 172 Acyclic send data settings, 172 Acyclic services, 172, 188 Adjustable responses "Overload Protection," "Unbalance Protection." and "Stalled Rotor Protection". 35 Analog module, 144 Analog module input settings, 186 Analog module inputs, 16, 175, 185 Analog module output, 16, 157, 165 Analog multiplexer, 16 Analog multiplexer example, 252 Analog multiplexer panel, 252 Analog terminal block, 14 Analog value recording, 16, 190 Analog value recording of measured curve, 191 Application selection, 70 Automatic acknowledgement of faults, 198 Auto-Reset, 202

В

Basic unit inputs, 18, 175, 176 Basic unit inputs settings, 177 Basic unit output settings, 159 Basic unit outputs, 158 Basic unit outputs, SIMOCODE pro C/V basic units, 18 Basic unit outputs, SIMOCODE pro S basic unit, 18 Binary terminal block, 14 Bus monitoring, 215

С

Calculator, 245 Calculator 1, 17 Calculator 2, 17 Calculator 3, 249 Calculator 4, 249 Calculator formulas, 247 Calculator settings, 246 Calculators 3, 4, 17 Change-over pause, 73, 86, 90, 91, 92, 94, 95, 98, 100, 101, 102, 104 Changing the marking of all Ethernet and PROFINET connections, 202 Circuit and parameterization for truth table 3I / 10, 223 Circuit breaker, 65, 83, 117 Circuit breaker settings, 83 Class, 41 Class time, 53 Cold run, 200 Connecting plugs with sockets, 15 Contactor control with control functions, 118 Contactor controls, 67 Control commands, 79, 81, 84, 88, 92, 95, 99, 102, 105, 107, 112, 114 Control function Dahlander reversing starter, 95 Control function Dahlander starter, 92 Control function settings for Dahlander reversing starter. 98 Control functions, 65 Control of lamps for displaying operating states, 159 Control station local control, 57, 64 Control station operator panel, 59 Control station PC, 58, 64 Control station PLC/PCS, 57, 64 Control station settings, 64 Control stations, 20, 57 Cooling-down period, 46 Cos phi monitoring, 21, 139 Counter 1 (2, 3, 4, 5, 6), 22 Counter settings, 227 Counters, 226 Cross-circuit detection, 211 Current limit monitoring, 132 Current limits, 20 Current measuring module installed in delta / in the supply cable, 73, 87, 91 Current notes on operational safety, 11 Current setting Is2, 38 Current threshold, 53 Cyclic PROFIBUS DP services, 171 Cyclic receive, 175, 187 Cyclic receive byte 0 (1, 2/3, 4/5), 23 Cyclic send, 170 Cyclic send byte 0 (1, 2/3, 4/9, 10/10), 23 Cyclic send data, 171, 171 Cyclic services, 187 Cyclic services for PROFINET / EtherNet/IP, 171

D

Dahlander reversing starter, 65, 71, 98, 117 Dahlander starter, 65, 71, 94, 117 Debounce time for inputs, 182 Delay prewarning, 50 Diagram of enables and enabled control command, 62 Digital module 1 (2) inputs, 17 Digital module 1 (2) inputs, DM-F = DM-F Local or DM-F PROFIsafe, 18 Digital module 1 (2) outputs, 17 Digital module 1 inputs, 175 Digital module 2 inputs, 175 Digital module inputs, 180 Digital module outputs, 163 Direct starter (direct-on-line starter), 65, 71, 78, 117 Direct starter (direct-on-line starter) control function, 77 Disclaimer of liability, 9

Ε

EEx e applications, 46, 55, 153 Emergency start, 19, 194, 207, 207 Emergency start settings, 207 Enabled command - example, 63 Enables, 62 Engineering software migration from V7 to V8, 31 Engineering software V7, 31 Engineering software V8, 30 Engineering software V9, 30 Ethernet - OPC-UA Receive, 175 Example - Pulse width modulator, 255 Example of a truth table for 3I / 10, 222 Example of truth table 2I/10, 224 Examples of calculators, 247 Examples of typical units and ranges in SIMOCODE pro, 244 Execution time, 73, 78, 80, 83, 87, 91, 94, 98, 101, 104, 106, 111, 113, 116 Extended control, 18, 69 Extended protection, 18 Extended protection ("overload protection," "unbalance protection," and "stalled rotor protection"), 34 Extended status and fault messages, 68 external fault. 201 External fault, 194, 202 External fault 1(2, 3, 4, 5, 6), 18 External ground-fault monitoring, 121 External ground-fault monitoring (with 3UL22 residual current transformer), 128 External ground-fault monitoring (with 3UL23 summation current transformer), 125, 129

F

Factors (linear) for trip times at operating temperature for 1st generation current / voltage measuring modules, 48 Factors for trip times at operating temperature for 2nd generation current / voltage measuring modules, 47 Fault feedback message, 73 Fault message, 8 Fault message "Fault - Test Position Feedback (TPF)" and acknowledgment, 200 Feedback ON. 72 Feedback time, 73, 78, 80, 83, 87, 91, 94, 98, 101, 104, 111, 113, 116 Flashing, 239 Flashing 1 (2, 3), 17 Flashing settings, 239 Flicker, 240 Flicker 1 (2, 3), 18 Flicker settings, 240 Floating License for one user, 29, 29, 30 Formula Calculators 3, 4, 250 Function block, 13

G

Ground-fault monitoring, 127 Ground-fault monitoring with ground-fault module 3UF7500, 21 Ground-fault monitoring with ground-fault module 3UF7510, 21 GSD file, 28

Η

Hardware test, 197 Hysteresis for current limits I>, 133 Hysteresis for monitoring functions, 155 Hysteresis for voltage, cos phi, power, voltage monitoring, 138 Hysteresis ground-fault current, 126, 131 Hysteresis, 0/4 to 20 mA monitoring, 146 Hysteresis, monitoring current limits I< (lower limit), 135

I

Input types, 174, 175 Inputs, 174 Inputs, DM1 Inputs function block as a DM-F Local fail-safe digital module, 181 Inputs, DM1 Inputs function block as DM-F PROFIsafe fail-safe digital module, 182 Interlocking time, 73, 79, 80, 91, 98, 104, 111, 116 Interlocking time, number of starts monitoring, 151 Internal ground-fault monitoring, 120, 127, 127

Κ

Key-operated switch operation, 60

L

Lamp control with control functions, 119 Lamp controls, 68 Lamp test, 197 Level motor operating hours monitoring, 148 Level motor stop time monitoring, 149 License download, 29, 29 Limit monitor, 241 Limit monitor 1 (2, 3, 4, 5, 6), 19 Limit monitor response, 242 Limit monitor settings, 243 Load type, 50, 73, 76, 78, 80, 83, 87, 91, 94, 98, 101, 104, 111, 113, 116 Locking the contactor, 72 Logic modules, 219

Μ

Main entry, 117 Manual Collection, 7 Manual operation, 60 Marking, 0/4 to 20 mA monitoring, 146 Max. star time, 73, 87, 91 Mode selector, 61, 64 Modes for calculator 2, 246 Molded-case circuit breaker (MCCB), 71 Molded-case circuit breaker (MCCB) control function, 81 Monitoring 0/4-20 mA (analog module 1, 2), 21 Monitoring current limits I< (lower limit), 134 Monitoring interval for mandatory testing, 21, 154 Monitoring of current limits I> (upper limit), 133 Monitoring the number of starts, 150 Motor operating hours monitoring response, 148 Motor operation monitoring response, 148 Motor stop time monitoring, 148, 149 Motor stop time monitoring response, 149

Ν

Newsletter, 11 Non-maintained command mode, 72, 78, 80, 83, 87, 91, 94, 98, 101, 104, 106, 111, 113, 116 Non-safety functions (fail-safe digital modules), 183 Non-volatile element, 236 Non-volatile element 1 (2, 3, 4), 19 Non-volatile element settings, 238 NOR function, 235, 238 Number of starts, 150 Number of starts - overshoot, 148 Number of starts - prewarning, 148

0

OFF command reset, 202 OM SIMOCODE pro, 27 OPC UA Receive, 189 OPC UA receive data 0 (1, 2/3), 19 OPC UA send data 0 (1), 19 OPC-UA send, 157, 173 OPC-UA Send Data, 173 Operating hours monitoring, 148, 148 Operating modes, 60 Operation monitoring, 17, 147 **Operational Protection Off, 194** Operational Protection Off (OPO), 17, 203 **Operational Protection Off settings**, 204 Operator panel [OP] control station, 64 Operator panel buttons, 17, 175, 178 Operator panel LED, 17, 160 Operator panel LED settings, 162 Output modes, 157 Output of the effective motor current Entire range, 166 Part of range, 167 Output response of the timer, 230 Outputs, 156 Overload, 117 Overload characteristics for 2nd generation current / voltage measuring modules (e.g. 3UF7110-1AA01-0), 42 Overload characteristics for current measuring modules, 1st generation current / voltage measuring modules (e.g. 3UF7110-1AA00-0) and 2nd generation current / voltage measuring modules in compatibility mode (e.g. 3UF7110-1AA01-0), 44 Overload relay, 65, 71 Overload relay control function, 75 Overload relay settings, 76 Overtemperature, 55, 153

Ρ

Panel reset, 202 Parameters for control functions, 72 Pause time, 49 Permissible starts, number of starts monitoring, 150 Phase balance formula, 52 Phase unbalance, 52 PLC / PCS monitoring, 215, 215 Plugs, analog, 13 Plugs, binary, 13 Pole-changing reversing starter, 65, 71, 104, 117 Pole-changing reversing starter control function, 102 Pole-changing reversing starter settings, 104 Pole-changing starter, 65, 71, 101, 117 Pole-changing starter control function, 99 Pole-changing starter settings, 101 Positioner, 65, 110, 204 Positioner (1, 2, 3, 4, 5), 71 Positioner 1, 117 Positioner 2, 117 Positioner 3, 117 Positioner 4, 117 Positioner 5, 117 Positioner control, 110 Positioner control function, 107 Power failure monitoring (UVO), 194, 205 Power failure time, 206 Power monitoring, 21 Powerpack for SIMOCODE ES 2007 Basic, 30 Powerpack for SIMOCODE ES 2007 Standard, 30 Pre-trigger, 190 Pre-warning level, 50 PROFIBUS DPV1, 188 Protection/Control, 20, 67 PTC, 54 PTC thermistor, 54 Pulse width modulator, 19 Pulse width modulator formulas, 254

R

Recycling and disposal, 9 Relay test, 197 Remote operation, 60 Remote reset, 202 Reset, 51, 194 Reset 1 (2, 3), 19 Reset bus / PLC fault, 216 Reset function, 196, 196 Reset settings, 198 Residual current, 127 Resistive load, 73 Response, 8 Response - Monitoring interval for mandatory testing, 154 Response to other control functions, OPO, 204 Response to overshooting the number of starts. number of starts monitoring, 151 Response to sensor fault, ground-fault monitoring, 131 Response to trip level 0/4 to 20 mA > (upper limit), 0/4 to 20 mA < (lower limit), 0/4 to 20 mA monitoring, 145 Response to trip level 0/4 to 20 mA> (upper limit), 0/4 to 20 mA< (lower limit), 0/4 to 20 mA monitoring, 145 Response to trip level P> (upper limit), P< (lower limit), active power monitoring, 142 Response to trip level, cos phi monitoring, 140 Response to trip level, ground-fault monitoring, 126, 130 Response to trip level, monitoring current limits I< (lower limit), 134 Response to trip level, monitoring current limits I> (upper limit), 133 Response to trip level, monitoring voltage, 137 Response to warning level P> (upper limit), P< (lower limit), active power monitoring, 142 Response to warning level, cos phi monitoring, 140 Response to warning level, ground-fault monitoring, 126, 130 Response to warning level, monitoring current limits I< (lower limit), 135 Response to warning level, monitoring current limits I> (upper limit), 133 Response to warning level, monitoring voltage, 138 Response, monitoring temperature, 153 Restart time delay, 206 Reversing starter, 65, 71, 80, 117 Reversing starter control function, 79 Reversing starter settings, 80 Runtime license V7, 31 Runtime license V8, 30 Runtime license V9, 30

S

Safe tripping, DM-F Local, 20 Safe tripping, DM-F PROFIsafe, 20 Safety-related tripping, 194, 208 Saving change-over command, 72, 80, 91, 94, 98, 101, 104, 116 Screw terminals, 13 Sensor circuit fault, 55

Sensor fault, 55 Separate fail-safe function from control function, 76, 78, 80, 83, 87, 91, 94, 98, 101, 104, 106, 111, 113, 116 Separating DM-FL/FP function from control function, 72 Set current Is1, 36, 36 SET/RESET button DM-F Local, 209 Setting ranges for current setting Is2, 38 Setting ranges for current setting Is1, 37 Settings for analog module output, 165 Settings for Dahlander starters, 94 Settings for DM1 / DM2 inputs, 182 Settings for external fault, 202 Settings for power failure monitoring (UVO), 206 Settings for truth table 21/10, 224 Settings for truth table 3I/10, 223 Settings for truth table for 5I / 20, 225 Settings of the DIP switches (DM-F PROFIsafe), 213 Settings of the DIP switches on the DM-F Local, 210 Signal conditioning, 233 Signal conditioning 1 (2, 3, 4, 5, 6), 20 Signal conditioning settings, 235 SIMATIC S7. 28 SIMOCODE ES. 202 SIMOCODE ES 2007, 27 SIMOCODE ES 2007 Basic, 29 SIMOCODE ES 2007 Premium, 30 SIMOCODE ES 2007 Standard, 29 SIMOCODE ES in the TIA Portal, 26 SIMOCODE ES V15 Premium, 29 SIMOCODE ES V15 Standard, 29 SIMOCODE pro block library for SIMATIC PCS 7 Version V8, 30 SIMOCODE pro block library for SIMATIC PCS 7 Version V8 with Advanced Process Library (APL), 30 SIMOCODE pro PCS 7 library, 28 Sockets (analog), 14 Sockets (binary), 14 Soft run-down time, 116 Soft starter, 65, 71, 117 Soft starter control function, 112, 113 Soft starter with reversing contactor, 65, 71, 116, 117 Soft starter with reversing contactor control function, 114 Soft starter with reversing contactor settings, 116 Software, 25, 25 Software Update Service, 29, 29, 30, 30 Solenoid valve, 65, 71, 106, 117 Solenoid valve control function, 105 Solenoid valve control function settings, 106 Stalled rotor level, 53 Stalled rotor protection, 53

Standard function blocks, 194 Standard functions, 193 Star-delta connection, 89, 120 Star-delta reversing starter, 65, 71, 91, 117 Star-delta reversing starter control function, 88 Star-delta reversing starter settings, 91 Star-delta starter, 65, 71, 87, 117 Star-delta starter control function, 84 Star-delta starter settings, 87 Startup override, 73, 144 State of status LED, 197 Status information, 68 Summation current evaluation, 127 Switching from star to delta, 84, 88 Switching the direction of rotation, 79, 88, 95, 102, 114 Switching the direction of travel, 108 Switching the speed, 92, 95, 99, 102

Т

Technical Assistance, 9 Temperature module 1/2 inputs, 21 Temperature module input settings, 184 Temperature module inputs, 175, 183 Temperature monitoring, 152 Temperature monitoring 1/2, 22 Temperature monitoring settings, 152 Temperature sensors, 152 Test. 194 Test / Reset. 195 Test 1 (2), 20 Test interval, monitoring interval for mandatory testing, 154 Test phases, 197 Test Position Feedback (TPF), 194, 199 Test settings, 197 Testing, 196 Thermal motor model, 47 Thermistor, 20, 54 Thermistor protection, 54 Time range for starts, 150 Time range for starts, number of starts monitoring, 150 Time stamp, 23 Time stamping, 194, 217 Time synchronization via PROFIBUS, 217 Timer 1 (2, 3, 4, 5, 6), 20 Timer settings, 232 timers, 228 TPF (test position feedback), 19 Transformation ratio active, 37, 38 Transformation ratio primary, 37, 39 Transformation ratio secondary, 37, 39

Trip class, 42, 44 Trip classes for 2-pole loads, 2nd generation current / voltage measuring modules, 43 Trip classes for 2-pole loads, current measuring modules and 1st generation current / voltage measuring modules, 45 Trip classes for 3-pole balanced loads, current measuring modules and 1st generation current / voltage measuring modules, 44 Trip classes for 3-pole loads, 2nd generation current / voltage measuring modules, 42 Trip level activity, warning level, cos phi monitorina, 140 Trip level, warning level, 0/4 to 20 mA monitoring, 144 Trip level, warning level, active power monitoring, 142 Trip level, warning level, ground-fault monitoring, 125, 129 Trip level, warning level, monitoring voltage, 137 Trip level, warning, level, cos phi monitoring, 139 Tripping characteristics, 45 Tripping time, 42, 44 Truth table 2I/10 (7, 8), 22 Truth table 3I/1O (1, 2, 3, 4, 5, 6, 10, 11), 22 Truth table 5I/2O (9), 22 Truth table for 2I / 10, 224 Truth table for 3I / 10, 221 Truth table for 5I / 2O, 225 Types of positioner control, 110, 111 Types of signals / output responses of non-volatile elements. 237 Types of signals / output responses of the signal conditioning, 234

U

Unbalance level, 52 Unbalance protection, 52 Undervoltage off (UVO), 22 Upgrade for SIMOCODE ES as from 2004, 30, 30

V

Voltage monitoring, 22, 136

W

Watchdog, 22, 215, 215 Watchdog (PLC/PCS Monitoring), 194 Watchdog settings, 216 Win SIMOCODE-DP converter, 28